首页> 外文期刊>ACM transactions on Asian language information processing >Deep Contextualized Word Embeddings for Universal Dependency Parsing
【24h】

Deep Contextualized Word Embeddings for Universal Dependency Parsing

机译:通用关联解析的深度上下文化词嵌入

获取原文
获取原文并翻译 | 示例

摘要

Deep contextualized word embeddings (Embeddings from Language Model, short for ELMo), as an emerging and effective replacement for the static word embeddings, have achieved success on a bunch of syntactic and semantic NLP problems. However, little is known about what is responsible for the improvements. In this article, we focus on the effect of ELMo for a typical syntax problem-universal POS tagging and dependency parsing. We incorporate ELMo as additional word embeddings into the state-of-the-art POS tagger and dependency parser, and it leads to consistent performance improvements. Experimental results show the model using ELMo outperforms the state-of-the-art baseline by an average of 0.91 for POS tagging and 1.11 for dependency parsing. Further analysis reveals that the improvements mainly result from the ELMo's better abstraction ability on the out-of-vocabulary (OOV) words, and the character-level word representation in ELMo contributes a lot to the abstraction. Based on ELMo's advantage on OOV, experiments that simulate low-resource settings are conducted and the results show that deep contextualized word embeddings are effective for data-insufficient tasks where the OOV problem is severe.
机译:深度上下文化的词嵌入(语言模型的嵌入,ELMo的缩写)作为一种新兴且有效的替代静态词嵌入的方法,已在一系列语法和语义NLP问题上取得了成功。但是,对于改进的原因知之甚少。在本文中,我们重点介绍ELMo对于典型语法问题的通用PO​​S标记和依赖项解析的影响。我们将ELMo作为附加的单词嵌入功能集成到最新的POS标记器和依赖项解析器中,从而带来了一致的性能改进。实验结果表明,使用ELMo的模型在POS标记方面的性能平均水平为0.91,在依赖项分析方面的性能平均水平为1.11。进一步的分析表明,这种改进主要是由于ELMo对非语音(OOV)单词具有更好的抽象能力,并且ELMo中的字符级单词表示对抽象有很大贡献。基于ELMo在OOV上的优势,进行了模拟低资源设置的实验,结果表明,深度的上下文化词嵌入对于OOV问题严重的数据不足的任务有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号