首页> 外文期刊>ACM transactions on Asian language information processing >Low-Resource Machine Transliteration Using Recurrent Neural Networks
【24h】

Low-Resource Machine Transliteration Using Recurrent Neural Networks

机译:递归神经网络的低资源机器音译

获取原文
获取原文并翻译 | 示例

摘要

Grapheme-to-phoneme models are key components in automatic speech recognition and text-to-speech systems. With low-resource language pairs that do not have available and well-developed pronunciation lexicons, grapheme-to-phoneme models are particularly useful. These models are based on initial alignments between grapheme source and phoneme target sequences. Inspired by sequence-to-sequence recurrent neural network-based translation methods, the current research presents an approach that applies an alignment representation for input sequences and pretrained source and target embeddings to overcome the transliteration problem for a low-resource languages pair. Evaluation and experiments involving French and Vietnamese showed that with only a small bilingual pronunciation dictionary available for training the transliteration models, promising results were obtained with a large increase in BLEU scores and a reduction in Translation Error Rate (TER) and Phoneme Error Rate (PER). Moreover, we compared our proposed neural network-based transliteration approach with a statistical one.
机译:音素到音素模型是自动语音识别和文本到语音系统中的关键组件。对于没有资源的低资源语言对以及完善的发音词典,字素到音素模型特别有用。这些模型基于字素源和音素目标序列之间的初始比对。受基于序列到序列的递归神经网络的翻译方法的启发,当前的研究提出了一种方法,该方法将对齐表示应用于输入序列以及预训练的源和目标嵌入,以克服低资源语言对的音译问题。涉及法语和越南语的评估和实验表明,只有很小的双语发音词典可用于训练音译模型,BLEU得分大大提高,翻译错误率(TER)和音素错误率(PER)降低了,获得了可喜的结果)。此外,我们将我们提出的基于神经网络的音译方法与统计方法进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号