首页> 外文期刊>ACM transactions on accessible computing >Deep Learning Compensation of Rotation Errors During Navigation Assistance for People with Visual Impairments or Blindness
【24h】

Deep Learning Compensation of Rotation Errors During Navigation Assistance for People with Visual Impairments or Blindness

机译:视力障碍或失明人士导航协助期间旋转误差的深度学习补偿

获取原文
获取原文并翻译 | 示例

摘要

Navigation assistive technologies are designed to support people with visual impairments during mobility. In particular, turn-by-turn navigation is commonly used to provide walk and turn instructions, without requiring any prior knowledge about the traversed environment. To ensure safe and reliable guidance, many research efforts focus on improving the localization accuracy of such instruments. However, even when the localization is accurate, imprecision in conveying guidance instructions to the user and in following the instructions can still lead to unrecoverable navigation errors. Even slight errors during rotations, amplified by the following frontal movement, can result in the user taking an incorrect and possibly dangerous path. In this article, we analyze trajectories of indoor travels in four different environments, showing that rotation errors are frequent in state-of-art navigation assistance for people with visual impairments. Such errors, caused by the delay between the instruction to stop rotating and when the user actually stops, result in over-rotation. To compensate for over-rotation, we propose a technique to anticipate the stop instruction so that the user stops rotating closer to the target rotation. The technique predicts over-rotation using a deep learning model that takes into account the user's current rotation speed, duration, and angle; the model is trained with a dataset of rotations performed by blind individuals. By analyzing existing datasets, we show that our approach outperforms a naive baseline that predicts over-rotation with a fixed value. Experiments with 11 blind participants also show that the proposed compensation method results in lower rotation errors (18.8° on average) compared to the non-compensated approach adopted in state-of-the-art solutions (30.1°).
机译:导航辅助技术旨在为行动不便的视力障碍人士提供支持。特别是,逐行导航通常用于提供步行和转行指令,而无需任何有关遍历环境的先验知识。为了确保安全可靠的指导,许多研究工作都集中在提高此类仪器的定位精度上。但是,即使定位准确,在向用户传达指导说明和遵循说明方面的不精确仍然会导致不可恢复的导航错误。在旋转过程中,即使是轻微的错误,由于随后的正面运动而加剧,也可能导致用户走错方向,甚至可能导致危险。在本文中,我们分析了四种不同环境中的室内旅行轨迹,表明在视力障碍者使用的最新技术导航中,旋转错误是经常发生的。由指令停止旋转和用户实际停止之间的延迟引起的此类错误会导致过度旋转。为了补偿过度旋转,我们提出了一种技术来预测停止指令,以便用户停止旋转,使其更接近目标旋转。该技术使用深度学习模型预测过度旋转,该模型考虑了用户当前的旋转速度,持续时间和角度;该模型是由盲人进行的旋转数据集训练的。通过分析现有数据集,我们证明了我们的方法优于单纯的基线,该基线可以预测固定值的过度旋转。与11个盲人参与者进行的实验还表明,与最新解决方案中采用的非补偿方法(30.1°)相比,所提出的补偿方法可降低旋转误差(平均18.8°)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号