首页> 外文期刊>ACM transactions on information and system security >New Payload Attribution Methods for Network Forensic Investigations
【24h】

New Payload Attribution Methods for Network Forensic Investigations

机译:网络取证调查的新有效载荷归因方法

获取原文
获取原文并翻译 | 示例

摘要

Payload attribution can be an important element in network forensics. Given a history of packet transmissions and an excerpt of a possible packet payload, a payload attribution system (PAS) makes it feasible to identify the sources, destinations, and the times of appearance on a network of all the packets that contained the specified payload excerpt. A PAS, as one of the core components in a network forensics system, enables investigating cybercrimes on the Internet by, for example, tracing the spread of worms and viruses, identifying who has received a phishing e-mail in an enterprise, or discovering which insider allowed an unauthorized disclosure of sensitive information. Due to the increasing volume of network traffic in today's networks, it is infeasible to effectively store and query all the actual packets for extended periods of time in order to allow analysis of network events for investigative purposes; therefore, we focus on extremely compressed digests of the packet activity. We propose several new methods for payload attribution, which utilize Rabin fingerprinting, shingling, and winnowing. Our best methods allow building practical payload attribution systems, which provide data reduction ratios greater than 100:1 while supporting efficient queries with very low false positive rates. We demonstrate the properties of the proposed methods and specifically analyze their performance and practicality when used as modules of a network forensics system ForNet. Our experimental results outperform current state-of-the-art methods both in terms of false positives and data reduction ratio. Finally, these approaches directly allow the collected data to be stored and queried by an untrusted party without disclosing any payload information nor the contents of queries.
机译:有效负载归因可能是网络取证中的重要元素。给定数据包传输的历史记录和可能的数据包有效内容摘录,有效负载归因系统(PAS)使得识别包含指定有效负载摘录的所有数据包的源,目的地和出现时间变得可行。作为网络取证系统的核心组件之一,PAS可以例如通过跟踪蠕虫和病毒的传播,确定谁在企业中收到了网络钓鱼电子邮件或发现哪个来调查互联网上的网络犯罪。内部人员允许未经授权披露敏感信息。由于当今网络中网络流量的增加,无法有效地长时间存储和查询所有实际数据包,以允许出于调查目的分析网络事件;因此,我们专注于数据包活动的高度压缩摘要。我们提出了几种有效载荷归因的新方法,这些方法利用Rabin指纹识别,带状排列和风选。我们的最佳方法允许构建实用的有效载荷归因系统,该系统提供大于100:1的数据缩减率,同时以极低的误报率支持有效的查询。我们演示了所提出方法的特性,并在用作网络取证系统ForNet的模块时专门分析了它们的性能和实用性。我们的实验结果在误报率和数据减少率方面均优于当前的最新方法。最后,这些方法直接允许不信任的一方存储和查询收集的数据,而无需透露任何有效负载信息或查询内容。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号