首页> 美国卫生研究院文献>Wiley-Blackwell Online Open >Real‐time analysis of conformational control in electron transfer reactions of human cytochrome P450 reductase with cytochrome c
【2h】

Real‐time analysis of conformational control in electron transfer reactions of human cytochrome P450 reductase with cytochrome c

机译:实时分析人细胞色素P450还原酶与细胞色素c的电子转移反应中的构象控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Protein domain dynamics and electron transfer chemistry are often associated, but real‐time analysis of domain motion in enzyme‐catalysed reactions and the elucidation of mechanistic schemes that relate these motions to the reaction chemistry are major challenges for biological catalysis research. Previously we suggested that reduction of human cytochrome P450 reductase with the reducing coenzyme NADPH is accompanied by major structural re‐orientation of the FMN‐ and FAD‐binding domains through an inferred dynamic cycle of ‘open’ and ‘closed’ conformations of the enzyme (PLoS Biol, 2011, e1001222). However, these studies were restricted to stopped‐flow/FRET analysis of the reductive half‐reaction, and were compromised by fluorescence quenching of the acceptor by the flavin cofactors. Here we have improved the design of the FRET system, by using dye pairs with near‐IR fluorescence, and extended studies on human cytochrome P450 reductase to the oxidative half‐reaction using a double‐mixing stopped‐flow assay, thereby analysing in real‐time conformational dynamics throughout the complete catalytic cycle. We correlate redox changes accompanying the reaction chemistry with protein dynamic changes observed by FRET, and show that redox chemistry drives a major re‐orientation of the protein domains in both the reductive and oxidative half‐reactions. Our studies using the tractable (soluble) surrogate electron acceptor cytochrome c provide a framework for analysing mechanisms of electron transfer in the endoplasmic reticulum between cytochrome P450 reductase and cognate P450 enzymes. More generally, our work emphasizes the importance of protein dynamics in intra‐ and inter‐protein electron transfer, and establishes methodology for real‐time analysis of structural changes throughout the catalytic cycle of complex redox proteins.
机译:蛋白质结构域动力学和电子转移化学通常相关,但是对酶催化反应中结构域运动的实时分析以及将这些运动与反应化学联系起来的机理方案的阐明是生物催化研究的主要挑战。以前我们曾建议通过还原酶辅酶NADPH还原人细胞色素P450还原酶,通过推断酶的'开放'和'封闭'构象的动态循环来伴随FMN和FAD结合域的主要结构重新定向( PLoS Biol,2011,e1001222)。但是,这些研究仅限于还原半反应的停止流/ FRET分析,并且受黄素辅因子对受体的荧光猝灭影响。在这里,我们通过使用具有近红外荧光的染料对改进了FRET系统的设计,并通过使用双重混合停止流测定法将人细胞色素P450还原酶扩展为氧化半反应的研究,从而进行了实时分析。整个催化循环的时间构象动力学。我们将伴随化学反应的氧化还原变化与通过FRET观察到的蛋白质动态变化相关联,并表明氧化还原化学在还原和氧化半反应中驱动蛋白质结构域的主要重新定向。我们使用易处理的(可溶性)替代电子受体细胞色素c的研究为分析细胞色素P450还原酶和同源P450酶在内质网中电子转移的机理提供了框架。更广泛地说,我们的工作强调了蛋白质动力学在蛋白质内部和蛋白质间电子转移中的重要性,并建立了在复杂氧化还原蛋白质整个催化循环中实时分析结构变化的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号