首页> 美国卫生研究院文献>Springer Open Choice >Large Spin-Dependent Thermoelectric Effects in NiFe-based Interconnected Nanowire Networks
【2h】

Large Spin-Dependent Thermoelectric Effects in NiFe-based Interconnected Nanowire Networks

机译:基于NiFe的互连纳米线网络中的大自旋相关热电效应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Thermoelectric effects in spintronic materials are actively studied in the emerging field of spin caloritronics due to their unique physical properties including spin Seebeck effects, thermally generated spin current and thermal-assisted spin-transfer torque [ – ]. Also, the thermoelectric analogs of the magnetoresistive effects in magnetic multilayers, spin valves, and tunneling junctions such as the giant magneto-Seebeck and magneto-Peltier effects are of special interest, as they could be used to enable magnetic control of heat flow and thermoelectric voltages for waste-heat recovery from electronic circuits [ , – ]. The large spin-dependent thermoelectric effects achieved by modifying appropriately the magnetization configurations of the multilayer with an external magnetic field exploit the fact that the Seebeck coefficients for spin-up and spin-down electrons are significantly different. This difference of Seebeck coefficients is ascribed to the d-band exchange splitting in transition ferromagnetic (FM) metals, as suggested from previous works performed on dilute magnetic alloys [ , ]. When considering the Peltier effect, it means that different amount of heat is carried by the spin-up and spin-down electrons. It was recently demonstrated that interconnected magnetic nanowire (NW) networks fabricated by electrochemical deposition in 3D nanoporous polymer host films provide an attractive pathway to fabricate light, robust, flexible, and shapeable spin caloritronic devices in versatile formats that meet key requirements for electrical, thermal, and mechanical stability [ , ]. In addition, electrochemical synthesis is a powerful method for fabricating multicomponent nanowires with different metals due to its engineering simplicity, versatility, and low-cost [ – ]. In such centimeter-scale nanowire networks, electrical connectivity is essential to allow charge flow over the whole sample sizes. The nanowire-based system overcomes the lack of reliability and reproducibility of the results obtained in metallic nanopillars and magnetic tunnel junctions [ , , , ], which can be mainly attributed to the thermal contact resistance between the nanoscale samples and the thermal baths which generate the temperature gradient. The 3D nanowire networks hold promise for flexible thermoelectric generators exhibiting extremely large and magnetically modulated thermoelectric power factor. The conventional thermoelectric modules consist of coupled n- and p-type thermoelectric materials or legs. While initial work has focused on n-type NW systems made of Co/Cu and CoNi/Cu multilayers [ , ], it was recently shown that dilute NiCr alloys are promising for the fabrication of p-type nanowire-based thermoelectric legs [ ]. In the present work, we report on experimental results obtained on other n-type thermoelectric films based on interconnected Ni, NiFe alloys, and Ni Fe /Cu multilayered NW networks. Nickel-iron is an important soft magnetic material that is widely used in magnetic data storage technologies. NiFe alloys with optimized sample compositions also exhibit large thermopower near room temperature. In addition, NiFe/Cu multilayers are well-known giant magnetoresistance (GMR) systems [ ]. The physical origin of GMR is the different conduction properties of the majority and minority spin electrons in magnetic multilayers. Through magneto-thermopower measurements and exploiting the fact that the branched nanowire architecture of these multilayer NW networks allows electrical measurements in the current perpendicular to the plane (CPP) geometry, a precise determination of spin-dependent Seebeck coefficients in permalloy (Ni Fe ) is obtained.
机译:自旋电子材料的热电效应由于其独特的物理特性(包括自旋塞贝克效应,热产生的自旋电流和热辅助自旋传递扭矩[–])在自旋量热电子学的新兴领域得到了积极研究。同样,磁性多层,自旋阀和隧道结中的磁阻效应的热电类似物(如巨型磁塞贝克效应和珀尔帖效应)也引起了人们的特别关注,因为它们可用于实现热流和热电的磁控制。电子电路废热回收电压[,–]。通过用外部磁场适当地改变多层的磁化构型而获得的大的自旋相关热电效应利用了这样的事实,即自旋向上和自旋向下电子的塞贝克系数明显不同。 Seebeck系数的这种差异归因于过渡铁磁(FM)金属中的d波段交换分裂,正如先前对稀磁性合金[,]所做的工作所暗示的那样。考虑珀尔帖效应时,这意味着自旋向上和自旋向下的电子会携带不同量的热量。最近证明,通过电化学沉积在3D纳米多孔聚合物主体膜中制造的互连磁性纳米线(NW)网络提供了一种诱人的途径,可以制造出满足电,热关键要求的通用格式的轻巧,坚固,灵活且可成形的自旋热电子器件以及机械稳定性[,]。此外,由于电化学合成的工程简便性,多功能性和低成本[–],它是一种用不同金属制造多组分纳米线的有效方法。在这种厘米级的纳米线网络中,电连接对于允许电荷在整个样本量中流动至关重要。基于纳米线的系统克服了在金属纳米柱和磁性隧道结[,,]中获得的结果缺乏可靠性和可重复性的问题,这主要归因于纳米级样品与产生水的热浴之间的热接触电阻。温度梯度。 3D纳米线网络有望为柔性热电发电机提供巨大的,磁调制的热电功率因数。常规的热电模块由耦合的n型和p型热电材料或支脚组成。尽管最初的工作集中在由Co / Cu和CoNi / Cu多层制成的n型NW系统上,但最近显示出稀薄的NiCr合金有望用于制造基于p型纳米线的热电腿[]。在本工作中,我们报告了在基于互连的Ni,NiFe合金和Ni Fe / Cu多层NW网络的其他n型热电薄膜上获得的实验结果。镍铁是一种重要的软磁材料,已广泛用于磁数据存储技术中。具有优化样品成分的NiFe合金在室温附近也表现出较大的热功率。此外,NiFe / Cu多层膜是众所周知的巨型磁阻(GMR)系统[]。 GMR的物理起源是磁性多层中大多数自旋电子和少数自旋电子的不同传导特性。通过磁热功率测量并利用以下事实:这些多层NW网络的分支纳米线体系结构允许在垂直于平面(CPP)几何形状的电流中进行电测量,因此可以精确确定坡莫合金(Ni Fe)中自旋相关的塞贝克系数获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号