首页> 美国卫生研究院文献>Springer Open Choice >Latent Class Models for Diary Method Data: Parameter Estimation by Local Computations
【2h】

Latent Class Models for Diary Method Data: Parameter Estimation by Local Computations

机译:日记方法数据的潜在类模型:通过局部计算进行参数估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The increasing use of diary methods calls for the development of appropriate statistical methods. For the resulting panel data, latent Markov models can be used to model both individual differences and temporal dynamics. The computational burden associated with these models can be overcome by exploiting the conditional independence relations implied by the model. This is done by associating a probabilistic model with a directed acyclic graph, and applying transformations to the graph. The structure of the transformed graph provides a factorization of the joint probability function of the manifest and latent variables, which is the basis of a modified and more efficient E-step of the EM algorithm. The usefulness of the approach is illustrated by estimating a latent Markov model involving a large number of measurement occasions and, subsequently, a hierarchical extension of the latent Markov model that allows for transitions at different levels. Furthermore, logistic regression techniques are used to incorporate restrictions on the conditional probabilities and to account for the effect of covariates. Throughout, models are illustrated with an experience sampling methodology study on the course of emotions among anorectic patients.
机译:日记方法的日益使用要求开发适当的统计方法。对于最终的面板数据,隐马尔可夫模型可用于对个体差异和时间动态进行建模。通过利用模型隐含的条件独立关系,可以克服与这些模型相关的计算负担。这是通过将概率模型与有向无环图相关联并将变换应用于图来完成的。变换后的图的结构提供了清单和潜在变量的联合概率函数的因式分解,这是EM算法修改后的更有效E步的基础。通过估计涉及大量测量场合的潜在马尔可夫模型,然后评估潜在马尔可夫模型的分层扩展(允许在不同级别进行转换)来说明该方法的有效性。此外,逻辑回归技术用于合并对条件概率的限制并考虑协变量的影响。贯穿整个过程,通过经验抽样方法研究厌食症患者的情绪变化过程来说明模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号