首页> 美国卫生研究院文献>Springer Open Choice >GraFIX: A semiautomatic approach for parsing low- and high-quality eye-tracking data
【2h】

GraFIX: A semiautomatic approach for parsing low- and high-quality eye-tracking data

机译:GraFIX:一种用于解析低质量和高质量眼动数据的半自动方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fixation durations (FD) have been used widely as a measurement of information processing and attention. However, issues like data quality can seriously influence the accuracy of the fixation detection methods and, thus, affect the validity of our results (Holmqvist, Nyström, & Mulvey, ). This is crucial when studying special populations such as infants, where common issues with testing (e.g., high degree of movement, unreliable eye detection, low spatial precision) result in highly variable data quality and render existing FD detection approaches highly time consuming (hand-coding) or imprecise (automatic detection). To address this problem, we present GraFIX, a novel semiautomatic method consisting of a two-step process in which eye-tracking data is initially parsed by using velocity-based algorithms whose input parameters are adapted by the user and then manipulated using the graphical interface, allowing accurate and rapid adjustments of the algorithms’ outcome. The present algorithms (1) smooth the raw data, (2) interpolate missing data points, and (3) apply a number of criteria to automatically evaluate and remove artifactual fixations. The input parameters (e.g., velocity threshold, interpolation latency) can be easily manually adapted to fit each participant. Furthermore, the present application includes visualization tools that facilitate the manual coding of fixations. We assessed this method by performing an intercoder reliability analysis in two groups of infants presenting low- and high-quality data and compared it with previous methods. Results revealed that our two-step approach with adaptable FD detection criteria gives rise to more reliable and stable measures in low- and high-quality data.
机译:固定持续时间(FD)已被广泛用作信息处理和关注度的度量。但是,诸如数据质量之类的问题会严重影响注视检测方法的准确性,从而影响我们结果的有效性(Holmqvist,Nyström和Mulvey,)。当研究特殊人群(例如婴儿)时,这是至关重要的,在这些人群中,测试的常见问题(例如,活动度高,眼睛检测不可靠,空间精度低)会导致数据质量变化很大,并使现有的FD检测方法非常耗时(手动编码)或不精确(自动检测)。为了解决这个问题,我们介绍了GraFIX,这是一种新颖的半自动方法,它由两步过程组成,其中首先通过使用基于速度的算法来分析眼动数据,该算法的输入参数由用户调整,然后使用图形界面进行操作,从而可以准确快速地调整算法的结果。本算法(1)平滑原始数据,(2)插补缺失的数据点,(3)应用许多标准来自动评估和删除人为注视。输入参数(例如速度阈值,内插等待时间)可以容易地手动调整以适合每个参与者。此外,本申请包括有助于对固定物进行手动编码的可视化工具。我们通过对两组低质量和高质量数据的婴儿进行编码器间可靠性分析来评估该方法,并将其与以前的方法进行比较。结果表明,我们采用适应性强的FD检测标准的两步法可以对低质量和高质量数据进行更可靠,更稳定的测量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号