首页> 美国卫生研究院文献>Springer Open Choice >... formula ... infection on a dynamic partnership network: characterization of ... formula ...
【2h】

... formula ... infection on a dynamic partnership network: characterization of ... formula ...

机译:...公式...在动态伙伴关系网络上的感染:...公式...的特征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We model the spread of an SI (Susceptible  → Infectious) sexually transmitted infection on a dynamic homosexual network. The network consists of individuals with a dynamically varying number of partners. There is demographic turnover due to individuals entering the population at a constant rate and leaving the population after an exponentially distributed time. Infection is transmitted in partnerships between susceptible and infected individuals. We assume that the state of an individual in this structured population is specified by its disease status and its numbers of susceptible and infected partners. Therefore the state of an individual changes through partnership dynamics and transmission of infection. We assume that an individual has precisely n ‘sites’ at which a partner can be bound, all of which behave independently from one another as far as forming and dissolving partnerships are concerned. The population level dynamics of partnerships and disease transmission can be described by a set of (n + 1)(n + 2) differential equations. We characterize the basic reproduction ratio R0 using the next-generation-matrix method. Using the interpretation of R0 we show that we can reduce the number of states-at-infection n to only considering three states-at-infection. This means that the stability analysis of the disease-free steady state of an (n + 1)(n + 2)-dimensional system is reduced to determining the dominant eigenvalue of a 3 × 3 matrix. We then show that a further reduction to a 2 × 2 matrix is possible where all matrix entries are in explicit form. This implies that an explicit expression for R0 can be found for every value of n.
机译:我们在动态同性恋网络上模拟SI(易感性→传染性)性传播感染的传播。该网络由具有动态变化的合作伙伴数量的个人组成。由于个人以恒定的速度进入人口并在指数分布的时间后离开人口,因此出现了人口流动。感染是在易感人群和感染者之间通过伙伴关系传播的。我们假定此结构化人群中的个体状态由其疾病状况以及易感和受感染的伴侣数量决定。因此,个体的状态通过伙伴关系动力学和感染传播而改变。我们假设一个人恰好有n个可以绑定伙伴的“站点”,就建立和解散伙伴关系而言,所有这些站点的行为都彼此独立。伙伴关系和疾病传播的种群水平动态可以通过一组(n + 1)(n + 2)微分方程来描述。我们使用下一代矩阵方法来表征基本再现比R0。使用R0的解释,我们表明我们可以将感染状态n的数量减少到仅考虑三个感染状态。这意味着减少了对(n + 1)(n + 2)维系统的无病稳态的稳定性分析,从而确定了3×3矩阵的主导特征值。然后我们证明,在所有矩阵条目均为显式形式的情况下,可以进一步简化为2×2矩阵。这意味着可以为每个n值找到R0的显式表达式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号