首页> 美国卫生研究院文献>Springer Open Choice >Parameter Estimation for Gene Regulatory Networks from Microarray Data: Cold Shock Response in Saccharomyces cerevisiae
【2h】

Parameter Estimation for Gene Regulatory Networks from Microarray Data: Cold Shock Response in Saccharomyces cerevisiae

机译:基因调控网络从微阵列数据的参数估计:酿酒酵母中的冷休克反应。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We investigated the dynamics of a gene regulatory network controlling the cold shock response in budding yeast, Saccharomyces cerevisiae. The medium-scale network, derived from published genome-wide location data, consists of 21 transcription factors that regulate one another through 31 directed edges. The expression levels of the individual transcription factors were modeled using mass balance ordinary differential equations with a sigmoidal production function. Each equation includes a production rate, a degradation rate, weights that denote the magnitude and type of influence of the connected transcription factors (activation or repression), and a threshold of expression. The inverse problem of determining model parameters from observed data is our primary interest. We fit the differential equation model to published microarray data using a penalized nonlinear least squares approach. Model predictions fit the experimental data well, within the 95 % confidence interval. Tests of the model using randomized initial guesses and model-generated data also lend confidence to the fit. The results have revealed activation and repression relationships between the transcription factors. Sensitivity analysis indicates that the model is most sensitive to changes in the production rate parameters, weights, and thresholds of Yap1, Rox1, and Yap6, which form a densely connected core in the network. The modeling results newly suggest that Rap1, Fhl1, Msn4, Rph1, and Hsf1 play an important role in regulating the early response to cold shock in yeast. Our results demonstrate that estimation for a large number of parameters can be successfully performed for nonlinear dynamic gene regulatory networks using sparse, noisy microarray data.Electronic supplementary materialThe online version of this article (doi:10.1007/s11538-015-0092-6) contains supplementary material, which is available to authorized users.
机译:我们调查了控制芽苗酵母酿酒酵母中的冷休克反应的基因调控网络的动力学。这个中等规模的网络是从已发布的全基因组位置数据中提取的,由21个转录因子组成,它们通过31个有向边缘相互调节。使用具有S形产生函数的质量平衡常微分方程对单个转录因子的表达水平进行建模。每个方程式包括生产速率,降解速率,表示关联的转录因子(激活或抑制)影响的大小和类型的权重以及表达阈值。从观测数据确定模型参数的反问题是我们的主要兴趣。我们使用惩罚性非线性最小二乘法将微分方程模型拟合到已发布的微阵列数据。模型预测在95%置信区间内很好地拟合了实验数据。使用随机初始猜测和模型生成的数据进行的模型测试也为拟合度带来了信心。结果揭示了转录因子之间的激活和抑制关系。敏感性分析表明,该模型对Yap1,Rox1和Yap6的生产率参数,权重和阈值的变化最为敏感,Yap1,Rox1和Yap6在网络中形成了紧密连接的核心。新的建模结果表明,Rap1,Fhl1,Msn4,Rph1和Hsf1在调节酵母对冷休克的早期反应中起重要作用。我们的结果表明,使用稀疏,嘈杂的微阵列数据可以成功地对非线性动态基因调控网络进行大量参数估计。电子补充材料本文的在线版本(doi:10.1007 / s11538-015-0092-6)包含补充材料,授权用户可以使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号