首页> 美国卫生研究院文献>Springer Open Choice >High-throughput imaging-based nephrotoxicity prediction for xenobiotics with diverse chemical structures
【2h】

High-throughput imaging-based nephrotoxicity prediction for xenobiotics with diverse chemical structures

机译:基于高通量成像的具有不同化学结构的异生素的肾毒性预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The kidney is a major target for xenobiotics, which include drugs, industrial chemicals, environmental toxicants and other compounds. Accurate methods for screening large numbers of potentially nephrotoxic xenobiotics with diverse chemical structures are currently not available. Here, we describe an approach for nephrotoxicity prediction that combines high-throughput imaging of cultured human renal proximal tubular cells (PTCs), quantitative phenotypic profiling, and machine learning methods. We automatically quantified 129 image-based phenotypic features, and identified chromatin and cytoskeletal features that can predict the human in vivo PTC toxicity of 44 reference compounds with ~82 % (primary PTCs) or 89 % (immortalized PTCs) test balanced accuracies. Surprisingly, our results also revealed that a DNA damage response is commonly induced by different PTC toxicants that have diverse chemical structures and injury mechanisms. Together, our results show that human nephrotoxicity can be predicted with high efficiency and accuracy by combining cell-based and computational methods that are suitable for automation.Electronic supplementary materialThe online version of this article (doi:10.1007/s00204-015-1638-y) contains supplementary material, which is available to authorized users.
机译:肾脏是异种生物的主要目标,异种生物包括药物,工业化学品,环境毒物和其他化合物。目前尚无用于筛选大量具有不同化学结构的潜在肾毒性异种生物的准确方法。在这里,我们描述了一种肾毒性预测方法,该方法结合了培养的人肾近端肾小管细胞(PTC)的高通量成像,定量表型分析和机器学习方法。我们自动量化了129个基于图像的表型特征,并确定了染色质和细胞骨架特征,这些特征可以预测44种参考化合物对人体内PTC的毒性,其中约82%(主要PTC)或89%(永生化PTC)的测试平衡准确度。出乎意料的是,我们的结果还表明,DNA损伤反应通常是由具有不同化学结构和损伤机理的不同PTC毒物诱导的。总之,我们的结果表明,通过组合适用于自动化的基于细胞的方法和计算方法,可以高效,准确地预测人的肾毒性。电子补充材料本文的在线版本(doi:10.1007 / s00204-015-1638-y )包含补充材料,授权用户可以使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号