首页> 美国卫生研究院文献>Springer Open Choice >Deep Filter Banks for Texture Recognition Description and Segmentation
【2h】

Deep Filter Banks for Texture Recognition Description and Segmentation

机译:深度过滤器库用于纹理识别描述和分段

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Visual textures have played a key role in image understanding because they convey important semantics of images, and because texture representations that pool local image descriptors in an orderless manner have had a tremendous impact in diverse applications. In this paper we make several contributions to texture understanding. First, instead of focusing on texture instance and material category recognition, we propose a human-interpretable vocabulary of texture attributes to describe common texture patterns, complemented by a new describable texture dataset for benchmarking. Second, we look at the problem of recognizing materials and texture attributes in realistic imaging conditions, including when textures appear in clutter, developing corresponding benchmarks on top of the recently proposed OpenSurfaces dataset. Third, we revisit classic texture represenations, including bag-of-visual-words and the Fisher vectors, in the context of deep learning and show that these have excellent efficiency and generalization properties if the convolutional layers of a deep model are used as filter banks. We obtain in this manner state-of-the-art performance in numerous datasets well beyond textures, an efficient method to apply deep features to image regions, as well as benefit in transferring features from one domain to another.
机译:视觉纹理在图像理解中起着关键作用,因为它们传达了图像的重要语义,并且因为以无序方式合并本地图像描述符的纹理表示在各种应用程序中产生了巨大影响。在本文中,我们对纹理的理解做出了一些贡献。首先,我们不关注纹理实例和材料类别识别,而是提出了一种人类可解释的纹理属性词汇来描述常见的纹理图案,并辅以一个新的可描述的纹理数据集进行基准测试。其次,我们研究在现实的成像条件下识别材料和纹理属性的问题,包括何时纹理出现混乱,并在最近提出的OpenSurfaces数据集之上开发相应的基准。第三,在深度学习的背景下,我们回顾了经典的纹理表示法,包括视觉词袋和Fisher向量,并表明,如果将深度模型的卷积层用作滤波器组,则它们具有出色的效率和泛化特性。通过这种方式,我们可以在纹理以外的众多数据集中获得最先进的性能,这是一种将深层特征应用于图像区域的有效方法,并且可以将特征从一个域转移到另一个域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号