首页> 美国卫生研究院文献>Springer Open Choice >A class of non-linear exposure-response models suitable for health impact assessment applicable to large cohort studies of ambient air pollution
【2h】

A class of non-linear exposure-response models suitable for health impact assessment applicable to large cohort studies of ambient air pollution

机译:一类适用于健康影响评估的非线性暴露-响应模型适用于大型队列研究环境空气污染

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The effectiveness of regulatory actions designed to improve air quality is often assessed by predicting changes in public health resulting from their implementation. Risk of premature mortality from long-term exposure to ambient air pollution is the single most important contributor to such assessments and is estimated from observational studies generally assuming a log-linear, no-threshold association between ambient concentrations and death. There has been only limited assessment of this assumption in part because of a lack of methods to estimate the shape of the exposure-response function in very large study populations. In this paper, we propose a new class of variable coefficient risk functions capable of capturing a variety of potentially non-linear associations which are suitable for health impact assessment. We construct the class by defining transformations of concentration as the product of either a linear or log-linear function of concentration multiplied by a logistic weighting function. These risk functions can be estimated using hazard regression survival models with currently available computer software and can accommodate large population-based cohorts which are increasingly being used for this purpose. We illustrate our modeling approach with two large cohort studies of long-term concentrations of ambient air pollution and mortality: the American Cancer Society Cancer Prevention Study II (CPS II) cohort and the Canadian Census Health and Environment Cohort (CanCHEC). We then estimate the number of deaths attributable to changes in fine particulate matter concentrations over the 2000 to 2010 time period in both Canada and the USA using both linear and non-linear hazard function models.Electronic supplementary materialThe online version of this article (doi:10.1007/s11869-016-0398-z) contains supplementary material, which is available to authorized users.
机译:旨在改善空气质量的监管措施的有效性通常通过预测实施措施所导致的公共卫生变化来评估。长期暴露于环境空气污染中过早死亡的风险是进行此类评估的最重要因素,并且根据观察性研究估计,通常假设环境浓度与死亡之间呈对数线性,无阈值关联。对该假设的评估有限,部分原因是在非常多的研究人群中缺乏估算暴露-反应功能形状的方法。在本文中,我们提出了一类新的可变系数风险函数,该函数能够捕获适用于健康影响评估的各种潜在的非线性关联。我们通过将浓度的转换定义为浓度的线性或对数线性函数乘以逻辑加权函数的乘积来构建类。这些风险函数可以使用具有当前可用计算机软件的风险回归生存模型进行估计,并且可以适应越来越多的基于人群的队列研究,这些群体正越来越多地用于此目的。我们通过两项关于环境空气污染和死亡率的长期浓度的大型队列研究来说明我们的建模方法:美国癌症协会癌症预防研究II(CPS II)队列和加拿大人口普查健康与环境队列(CanCHEC)。然后,我们使用线性和非线性危害函数模型估算了加拿大和美国在2000年至2010年期间细颗粒物浓度变化引起的死亡人数。电子补充材料本文的在线版本(doi: 10.1007 / s11869-016-0398-z)包含补充材料,授权用户可以使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号