首页> 美国卫生研究院文献>Springer Open Choice >Co-evolution of wetland landscapes flooding and human settlement in the Mississippi River Delta Plain
【2h】

Co-evolution of wetland landscapes flooding and human settlement in the Mississippi River Delta Plain

机译:密西西比河三角洲平原湿地景观洪水和人类住区的共同演变

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

River deltas all over the world are sinking beneath sea-level rise, causing significant threats to natural and social systems. This is due to the combined effects of anthropogenic changes to sediment supply and river flow, subsidence, and sea-level rise, posing an immediate threat to the 500–1,000 million residents, many in megacities that live on deltaic coasts. The Mississippi River Deltaic Plain (MRDP) provides examples for many of the functions and feedbacks, regarding how human river management has impacted source-sink processes in coastal deltaic basins, resulting in human settlements more at risk to coastal storms. The survival of human settlement on the MRDP is arguably coupled to a shifting mass balance between a deltaic landscape occupied by either land built by the Mississippi River or water occupied by the Gulf of Mexico. We developed an approach to compare 50 % L:W isopleths (L:W is ratio of land to water) across the Atchafalaya and Terrebonne Basins to test landscape behavior over the last six decades to measure delta instability in coastal deltaic basins as a function of reduced sediment supply from river flooding. The Atchafalaya Basin, with continued sediment delivery, compared to Terrebonne Basin, with reduced river inputs, allow us to test assumptions of how coastal deltaic basins respond to river management over the last 75 years by analyzing landward migration rate of 50 % L:W isopleths between 1932 and 2010. The average landward migration for Terrebonne Basin was nearly 17,000 m (17 km) compared to only 22 m in Atchafalaya Basin over the last 78 years (p < 0.001), resulting in migration rates of 218 m/year (0.22 km/year) and <0.5 m/year, respectively. In addition, freshwater vegetation expanded in Atchafalaya Basin since 1949 compared to migration of intermediate and brackish marshes landward in the Terrebonne Basin. Changes in salt marsh vegetation patterns were very distinct in these two basins with gain of 25 % in the Terrebonne Basin compared to 90 % decrease in the Atchafalaya Basin since 1949. These shifts in vegetation types as L:W ratio decreases with reduced sediment input and increase in salinity also coincide with an increase in wind fetch in Terrebonne Bay. In the upper Terrebonne Bay, where the largest landward migration of the 50 % L:W ratio isopleth occurred, we estimate that the wave power has increased by 50–100 % from 1932 to 2010, as the bathymetric and topographic conditions changed, and increase in maximum storm-surge height also increased owing to the landward migration of the L:W ratio isopleth. We argue that this balance of land relative to water in this delta provides a much clearer understanding of increased flood risk from tropical cyclones rather than just estimates of areal land loss. We describe how coastal deltaic basins of the MRDP can be used as experimental landscapes to provide insights into how varying degrees of sediment delivery to coastal deltaic floodplains change flooding risks of a sinking delta using landward migrations of 50 % L:W isopleths. The nonlinear response of migrating L:W isopleths as wind fetch increases is a critical feedback effect that should influence human river-management decisions in deltaic coast. Changes in land area alone do not capture how corresponding landscape degradation and increased water area can lead to exponential increase in flood risk to human populations in low-lying coastal regions. Reduced land formation in coastal deltaic basins (measured by changes in the land:water ratio) can contribute significantly to increasing flood risks by removing the negative feedback of wetlands on wave and storm-surge that occur during extreme weather events. Increased flood risks will promote population migration as human risks associated with living in a deltaic landscape increase, as land is submerged and coastal inundation threats rise. These system linkages in dynamic deltaic coasts define a balance of river management and human settlement dependent on a certain level of land area within coastal deltaic basins (L).
机译:全世界的三角洲都在海平面上升之下下沉,对自然和社会系统造成了重大威胁。这是由于人为变化对沉积物供应和河流流量,沉降和海平面上升的综合影响,这直接威胁到500–10亿居民,其中许多人生活在三角洲沿海的大城市。密西西比河三角洲平原(MRDP)提供了许多功能和反馈的示例,涉及人为河流管理如何影响沿海三角洲盆地的源汇过程,从而使人类住区面临沿海风暴的风险更大。 MRDP上人类住区的生存可能与密西西比河所建土地或墨西哥湾所占水域所占据的三角洲景观之间不断变化的质量平衡有关。我们开发了一种方法来比较整个Atchafalaya和Terrebonne盆地的50%L:W等值线(L:W是土地与水的比率),以测试过去六十年来的景观行为,以测量沿海三角洲盆地的三角洲不稳定性。减少了洪水造成的泥沙供应。与Terrebonne盆地相比,Achafalaya盆地具有持续的泥沙输送,河流输入量减少了,这使我们能够通过分析50%L:W等值点的陆上迁徙率来测试沿海三角洲盆地过去75年对河流管理的反应的假设在1932年至2010年之间。在过去的78年中,特雷博讷盆地的平均陆上迁徙量接近17,000 m(17 km),而在Atchafalaya盆地中只有22 m(p <0.001),因此,迁徙速度为218 m /年(0.22) km / year)和<0.5 m / year。此外,自1949年以来,阿特查法拉雅盆地的淡水植被扩展了,而特雷博纳盆地的中,微咸沼泽向内迁移。自1949年以来,这两个盆地的盐沼植被格局变化非常明显,特雷博讷盆地的增幅为25%,而阿查法拉亚盆地的下降幅度为90%。盐度的增加也与Terrebonne湾的取风量增加有关。在Terrebonne湾上游,L:W比等值线发生了最大的向陆迁移,我们估计,从1932年到2010年,随着测深和地形条件的变化,波功率增加了50-100%,并且增加了最大风暴潮高度的最大变化也归因于L:W比等值向陆地的迁移。我们认为,该三角洲中土地相对于水的平衡使人们更加清楚地了解了热带气旋带来的洪水风险,而不仅仅是对土地面积损失的估计。我们描述了MRDP的沿海三角洲盆地如何可以用作实验性景观,以通过50%L:W等静角向陆上的运移,洞悉向沿海三角洲洪泛区输送的不同程度的沉积物如何改变沉没三角洲的洪水风险。随着取风量的增加,迁移的L:W等值线的非线性响应是一个关键的反馈效应,应影响三角洲沿岸的人类河流管理决策。仅土地面积的变化并不能反映出相应的景观退化和水域面积增加如何导致低洼沿海地区的洪水泛滥风险增加。通过消除极端天气事件中发生的波浪和风暴潮造成的湿地负反馈,沿海三角洲盆地减少的土地形成(通过土地与水比的变化来衡量)可以极大地增加洪水风险。随着土地被淹没和沿海淹没威胁的增加,与生活在三角洲地区相关的人类风险增加,洪水风险的增加将促进人口迁移。在动态三角洲沿海地区,这些系统联系决定了河流管理和人类住区之间的平衡,这取决于沿海三角洲盆地内的一定土地面积(L)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号