首页> 美国卫生研究院文献>Springer Open Choice >Insight into the ten-penny problem: guiding search by constraints and maximization
【2h】

Insight into the ten-penny problem: guiding search by constraints and maximization

机译:深入了解10分钱问题:通过约束和最大化来指导搜索

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

For a long time, insight problem solving has been either understood as nothing special or as a particular class of problem solving. The first view implicates the necessity to find efficient heuristics that restrict the search space, the second, the necessity to overcome self-imposed constraints. Recently, promising hybrid cognitive models attempt to merge both approaches. In this vein, we were interested in the interplay of constraints and heuristic search, when problem solvers were asked to solve a difficult multi-step problem, the ten-penny problem. In three experimental groups and one control group (N = 4 × 30) we aimed at revealing, what constraints drive problem difficulty in this problem, and how relaxing constraints, and providing an efficient search criterion facilitates the solution. We also investigated how the search behavior of successful problem solvers and non-solvers differ. We found that relaxing constraints was necessary but not sufficient to solve the problem. Without efficient heuristics that facilitate the restriction of the search space, and testing the progress of the problem solving process, the relaxation of constraints was not effective. Relaxing constraints and applying the search criterion are both necessary to effectively increase solution rates. We also found that successful solvers showed promising moves earlier and had a higher maximization and variation rate across solution attempts. We propose that this finding sheds light on how different strategies contribute to solving difficult problems. Finally, we speculate about the implications of our findings for insight problem solving.
机译:长期以来,洞察力解决问题要么被理解为没有什么特别的问题,要么被理解为一类特殊的问题解决方案。第一种观点意味着找到限制搜索空间的有效启发式方法的必要性,第二种观点则是克服自我施加的约束的必要性。最近,有前途的混合认知模型试图将两种方法融合。在这种情况下,当问题解决者被要求解决一个困难的多步问题,即十分钱问题时,我们对约束和启发式搜索的相互作用感兴趣。在三个实验组和一个对照组(N = 4×30)中,我们旨在揭示什么约束导致此问题中的问题难度,以及如何放松约束并提供有效的搜索条件有助于解决方案。我们还研究了成功的问题解决者和非解决者的搜索行为是如何不同的。我们发现放松约束是必要的,但不足以解决问题。如果没有有效的启发式方法来促进对搜索空间的限制,并且没有测试问题解决过程的进度,那么约束的放松就没有效果。放宽约束条件和应用搜索条件都是有效提高求解率的必要条件。我们还发现,成功的求解器会更早地显示出有希望的动作,并且在整个求解尝试中具有更高的最大化和变化率。我们建议,这一发现揭示了不同的策略如何有助于解决难题。最后,我们推测我们的发现对解决洞察力问题的意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号