首页> 美国卫生研究院文献>Springer Open Choice >Learning stochastic finite-state transducer to predict individual patient outcomes
【2h】

Learning stochastic finite-state transducer to predict individual patient outcomes

机译:学习随机有限状态换能器以预测单个患者的结果

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The high frequency data in intensive care unit is flashed on a screen for a few seconds and never used again. However, this data can be used by machine learning and data mining techniques to predict patient outcomes. Learning finite-state transducers (FSTs) have been widely used in problems where sequences need to be manipulated and insertions, deletions and substitutions need to be modeled. In this paper, we learned the edit distance costs of a symbolic univariate time series representation through a stochastic finite-state transducer to predict patient outcomes in intensive care units. The Nearest-Neighbor method with these learned costs was used to classify the patient status within an hour after 10 h of data. Several experiments were developed to estimate the parameters that better fit the model regarding the prediction metrics. Our best results are compared with published works, where most of the metrics (i.e., Accuracy, Precision and F-measure) were improved.
机译:重症监护病房中的高频数据在屏幕上闪烁了几秒钟,并且不再使用。但是,机器学习和数据挖掘技术可以使用此数据来预测患者预后。学习有限状态换能器(FST)已广泛用于需要操纵序列且需要对插入,缺失和取代进行建模的问题中。在本文中,我们通过随机有限状态换能器预测了重症监护病房的患者预后,了解了符号单变量时间序列表示的编辑距离成本。具有这些学习成本的最近邻方法用于在10小时数据后的一小时内对患者状态进行分类。开发了一些实验来估计关于预测指标的参数,这些参数更适合模型。我们将最好的结果与已发表的作品进行了比较,其中大多数指标(即准确性,精确度和F度量)得到了改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号