首页> 美国卫生研究院文献>Springer Open Choice >Robustness of two different methods of monitoring respiratory system compliance during mechanical ventilation
【2h】

Robustness of two different methods of monitoring respiratory system compliance during mechanical ventilation

机译:机械通气期间监测呼吸系统顺应性的两种不同方法的稳健性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Robustness measures the performance of estimation methods when they work under non-ideal conditions. We compared the robustness of artificial neural networks (ANNs) and multilinear fitting (MLF) methods in estimating respiratory system compliance (C RS) during mechanical ventilation (MV). Twenty-four anaesthetized pigs underwent MV. Airway pressure, flow and volume were recorded at fixed intervals after the induction of acute lung injury. After consecutive mechanical breaths, an inspiratory pause (BIP) was applied in order to calculate CRS using the interrupter technique. From the breath preceding the BIP, ANN and MLF had to compute CRS in the presence of two types of perturbations: transient sensor disconnection (TD) and random noise (RN). Performance of the two methods was assessed according to Bland and Altman. The ANN presented a higher bias and scatter than MLF during the application of RN, except when RN was lower than 2% of peak airway pressure. During TD, MLF algorithm showed a higher bias and scatter than ANN. After the application of RN, ANN and MLF maintain a stable performance, although MLF shows better results. ANNs have a more stable performance and yield a more robust estimation of C RS than MLF in conditions of transient sensor disconnection.Electronic supplementary materialThe online version of this article (doi:10.1007/s11517-017-1631-0) contains supplementary material, which is available to authorized users.
机译:稳健性衡量估计方法在非理想条件下的性能。我们比较了人工神经网络(ANN)和多线性拟合(MLF)方法在估计机械通气(MV)期间呼吸系统顺应性(C RS)方面的鲁棒性。对24只麻醉猪进行了MV。诱发急性肺损伤后,以固定的间隔记录气道压力,流量和体积。经过连续的机械呼吸后,应用了呼吸暂停(BIP),以便使用中断器技术计算CRS。从BIP之前的呼吸开始,ANN和MLF必须在存在两种类型的扰动的情况下计算CRS:瞬态传感器断开(TD)和随机噪声(RN)。根据Bland和Altman评估了这两种方法的性能。在RN应用期间,ANN比MLF具有更高的偏差和散射,除非RN低于峰值气道压力的2%。在TD期间,MLF算法显示出比ANN高的偏差和散布。 RN应用后,尽管MLF显示出更好的结果,但ANN和MLF仍保持稳定的性能。在瞬态传感器断开的情况下,人工神经网络具有比MLF更稳定的性能并且对C RS的估计更可靠。电子补充材料本文的在线版本(doi:10.1007 / s11517-017-1631-0)包含补充材料,其中适用于授权用户。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号