首页> 美国卫生研究院文献>Springer Open Choice >Phase space of modified Gauss–Bonnet gravity
【2h】

Phase space of modified Gauss–Bonnet gravity

机译:修正高斯-邦尼引力的相空间

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We investigate the evolution of non-vacuum Friedmann–Lemaître–Robertson–Walker (FLRW) spacetimes with any spatial curvature in the context of Gauss–Bonnet gravity. The analysis employs a new method which enables us to explore the phase space of any specific theory of this class. We consider several examples, discussing the transition from a decelerating into an acceleration universe within these theories. We also deduce from the dynamical equations some general conditions on the form of the action which guarantee the presence of specific behaviours like the emergence of accelerated expansion. As in f(R) gravity, our analysis shows that there is a set of initial conditions for which these models have a finite time singularity which can be an attractor. The presence of this instability also in the Gauss–Bonnet gravity is to be ascribed to the fourth-order derivative in the field equations, i.e., is the direct consequence of the higher order of the equations.
机译:我们研究了在高斯-邦尼引力的情况下具有任意空间曲率的非真空弗里德曼-莱曼特-罗伯逊-沃克(FLRW)时空的演化。分析采用了一种新方法,该方法使我们能够探索此类特定理论的相空间。我们考虑几个例子,讨论这些理论中从减速宇宙到加速宇宙的过渡。我们还从动力学方程式中得出了作用形式的一些一般条件,这些条件保证了特定行为的存在,例如加速膨胀的出现。正如在f(R)引力中一样,我们的分析表明,对于一组初始条件,这些模型具有有限的时间奇点性,可以成为吸引子。高斯-邦纳引力中也存在这种不稳定性,这归因于场方程的四阶导数,即是方程高阶的直接结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号