首页> 美国卫生研究院文献>Springer Open Choice >Probability of misclassifying biological elements in surface waters
【2h】

Probability of misclassifying biological elements in surface waters

机译:地表水中生物元素分类错误的可能性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Measurement uncertainties are inherent to assessment of biological indices of water bodies. The effect of these uncertainties on the probability of misclassification of ecological status is the subject of this paper. Four Monte-Carlo (M-C) models were applied to simulate the occurrence of random errors in the measurements of metrics corresponding to four biological elements of surface waters: macrophytes, phytoplankton, phytobenthos, and benthic macroinvertebrates. Long series of error-prone measurement values of these metrics, generated by M-C models, were used to identify cases in which values of any of the four biological indices lay outside of the “true” water body class, i.e., outside the class assigned from the actual physical measurements. Fraction of such cases in the M-C generated series was used to estimate the probability of misclassification. The method is particularly useful for estimating the probability of misclassification of the ecological status of surface water bodies in the case of short sequences of measurements of biological indices. The results of the Monte-Carlo simulations show a relatively high sensitivity of this probability to measurement errors of the river macrophyte index (MIR) and high robustness to measurement errors of the benthic macroinvertebrate index (MMI). The proposed method of using Monte-Carlo models to estimate the probability of misclassification has significant potential for assessing the uncertainty of water body status reported to the EC by the EU member countries according to WFD. The method can be readily applied also in risk assessment of water management decisions before adopting the status dependent corrective actions.
机译:测量不确定度是评估水体生物学指标所固有的。这些不确定性对生态状况分类错误的可能性的影响是本文的主题。应用四个蒙特卡洛(M-C)模型来模拟与地表水四个生物元素(大型植物,浮游植物,植物底栖动物和底栖大型无脊椎动物)相对应的度量标准测量中的随机误差的发生。由MC模型生成的这些指标的易出错测量值的长序列,用于识别四种生物学指标中的任何一项的值都在“真实”水体类别之外(即,在从实际的物理测量。 M-C生成的序列中此类情况的分数被用来估计错误分类的可能性。在短时间测量生物指标的情况下,该方法对于估算地表水体的生态状况分类错误的可能性特别有用。蒙特卡洛模拟的结果表明,这种可能性对河流大型植物指数(MIR)的测量误差具有较高的敏感性,并且对底栖大型无脊椎动物指数(MMI)的测量误差具有较高的鲁棒性。提议的使用蒙特卡洛模型来估计错误分类的可能性的方法,对于评估欧盟成员国根据WFD向EC报告的水体状况的不确定性具有巨大的潜力。该方法在采用状态相关的纠正措施之前,也可以很容易地应用于水管理决策的风险评估中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号