首页> 美国卫生研究院文献>Springer Open Choice >Threshold Maps for Inclusion-Initiated Micro-Cracks and White Etching Areas in Bearing Steel: The Role of Impact Loading and Surface Sliding
【2h】

Threshold Maps for Inclusion-Initiated Micro-Cracks and White Etching Areas in Bearing Steel: The Role of Impact Loading and Surface Sliding

机译:轴承钢中夹杂物引发的微裂纹和白色蚀刻区域的阈值图:冲击载荷和表面滑动的作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Wind turbine gearbox (WTG) bearings can fail prematurely, significantly affecting wind turbine operational availability and the cost of energy production. The current most commonly accepted theory of failure mechanism is that the bearing subsurface is weakened by white etching crack (WEC) networks that eventually lead to the flaking away of material from the bearing surface. Subsurface damage due to rolling contact fatigue (RCF) is thought to be the main cause of premature failure, resulting from the initiation of micro-cracks, often at non-metallic inclusions or other material defects, which then propagate to the bearing surface. This study proposes a hypothesis that impact loading together with high levels of surface traction and contact pressure are important factors contributing to the initiation of micro-cracks and white etching areas (WEAs) at non-metallic inclusions which may lead to the formation of WEC networks. Both repeated impact and twin-disc RCF tests were designed to investigate inclusion-initiated micro-cracks and WEAs at subsurface in order to test this hypothesis. This led to the recreation of inclusion-initiated micro-cracks and WEAs in tested specimens, similar to the subsurface damage observed at inclusions in failed WTG bearing raceways. Tests were carried out to determine threshold levels of contact pressure, surface traction, and impact loading required for the formation of inclusion-initiated micro-cracks and WEAs.
机译:风力涡轮机齿轮箱(WTG)轴承可能过早失效,从而严重影响风力涡轮机的运行可用性和能源生产成本。当前最普遍接受的失效机理理论是轴承表面被白色蚀刻裂纹(WEC)网络削弱,最终导致材料从轴承表面剥落。滚动接触疲劳(RCF)引起的表面下损坏被认为是过早失效的主要原因,通常由非金属夹杂物或其他材料缺陷引起的微裂纹引发,然后传播至轴承表面。这项研究提出了一个假设,即冲击载荷以及高水平的表面牵引力和接触压力是导致在非金属夹杂物处引发微裂纹和白色蚀刻区域(WEA)的重要因素,这可能导致WEC网络的形成。重复冲击和双盘RCF测试均旨在调查地下夹杂物引发的微裂纹和WEA,以检验该假设。这导致测试样品中夹杂物引发的微裂纹和WEA的再生,类似于在失效的WTG轴承滚道中夹杂物所观察到的地下破坏。进行测试以确定形成夹杂物引发的微裂纹和WEA所需的接触压力,表面牵引力和冲击载荷的阈值水平。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号