首页> 美国卫生研究院文献>Springer Open Choice >Intracerebral EEG Artifact Identification Using Convolutional Neural Networks
【2h】

Intracerebral EEG Artifact Identification Using Convolutional Neural Networks

机译:利用卷积神经网络识别脑内脑电伪迹

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Manual and semi-automatic identification of artifacts and unwanted physiological signals in large intracerebral electroencephalographic (iEEG) recordings is time consuming and inaccurate. To date, unsupervised methods to accurately detect iEEG artifacts are not available. This study introduces a novel machine-learning approach for detection of artifacts in iEEG signals in clinically controlled conditions using convolutional neural networks (CNN) and benchmarks the method’s performance against expert annotations. The method was trained and tested on data obtained from St Anne’s University Hospital (Brno, Czech Republic) and validated on data from Mayo Clinic (Rochester, Minnesota, U.S.A). We show that the proposed technique can be used as a generalized model for iEEG artifact detection. Moreover, a transfer learning process might be used for retraining of the generalized version to form a data-specific model. The generalized model can be efficiently retrained for use with different EEG acquisition systems and noise environments. The generalized and specialized model F1 scores on the testing dataset were 0.81 and 0.96, respectively. The CNN model provides faster, more objective, and more reproducible iEEG artifact detection compared to manual approaches.
机译:手动和半自动识别大型脑电图(iEEG)记录中的伪影和不需要的生理信号既费时又不准确。迄今为止,还没有用于精确检测iEEG伪像的无监督方法。这项研究介绍了一种新颖的机器学习方法,可使用卷积神经网络(CNN)在临床控制条件下检测iEEG信号中的伪像,并针对专家注释对方法的性能进行基准测试。该方法经过了从圣安妮大学医院(捷克共和国布尔诺)获得的数据的培训和测试,并得到了梅奥诊所(美国明尼苏达州罗切斯特)的数据的验证。我们表明,提出的技术可以用作iEEG伪像检测的通用模型。此外,转移学习过程可用于通用版本的再培训,以形成特定于数据的模型。可以对通用模型进行有效的重新训练,以用于不同的EEG采集系统和噪声环境。测试数据集上的通用和专用模型F1分数分别为0.81和0.96。与手动方法相比,CNN模型提供了更快,更客观,更可重现的iEEG伪像检测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号