首页> 美国卫生研究院文献>PLoS Computational Biology >Systems-Wide Prediction of Enzyme Promiscuity Reveals a New Underground Alternative Route for Pyridoxal 5’-Phosphate Production in E. coli
【2h】

Systems-Wide Prediction of Enzyme Promiscuity Reveals a New Underground Alternative Route for Pyridoxal 5’-Phosphate Production in E. coli

机译:全系统的酶混用预测揭示了在大肠杆菌中生产吡咯醛5'-磷酸盐的新的地下替代路线

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recent insights suggest that non-specific and/or promiscuous enzymes are common and active across life. Understanding the role of such enzymes is an important open question in biology. Here we develop a genome-wide method, PROPER, that uses a permissive PSI-BLAST approach to predict promiscuous activities of metabolic genes. Enzyme promiscuity is typically studied experimentally using multicopy suppression, in which over-expression of a promiscuous ‘replacer’ gene rescues lethality caused by inactivation of a ‘target’ gene. We use PROPER to predict multicopy suppression in Escherichia coli, achieving highly significant overlap with published cases (hypergeometric p = 4.4e-13). We then validate three novel predicted target-replacer gene pairs in new multicopy suppression experiments. We next go beyond PROPER and develop a network-based approach, GEM-PROPER, that integrates PROPER with genome-scale metabolic modeling to predict promiscuous replacements via alternative metabolic pathways. GEM-PROPER predicts a new indirect replacer (thiG) for an essential enzyme (pdxB) in production of pyridoxal 5’-phosphate (the active form of Vitamin B6), which we validate experimentally via multicopy suppression. We perform a structural analysis of thiG to determine its potential promiscuous active site, which we validate experimentally by inactivating the pertaining residues and showing a loss of replacer activity. Thus, this study is a successful example where a computational investigation leads to a network-based identification of an indirect promiscuous replacement of a key metabolic enzyme, which would have been extremely difficult to identify directly.
机译:最近的见解表明,非特异性和/或混杂酶在生命中是常见且活跃的。了解此类酶的作用是生物学中一个重要的开放性问题。在这里,我们开发了一种全基因组方法,即PROPER,该方法使用允许的PSI-BLAST方法来预测代谢基因的混杂活动。酶混杂通常是通过多拷贝抑制进行实验研究的,其中混杂的“替代”基因的过表达可以挽救“目标”基因失活所致的致死性。我们使用PROPER预测大肠埃希菌中的多拷贝抑制,与已发表的病例实现高度显着的重叠(超几何p = 4.4e-13)。然后,我们在新的多拷贝抑制实验中验证了三个新颖的预测目标-替换基因对。接下来,我们将超越PROPER,开发一种基于网络的方法GEM-PROPER,该方法将PROPER与基因组规模的代谢建模相集成,以预测通过替代代谢途径的混杂替代。 GEM-PROPER预测了吡ido醛5'-磷酸酯(维生素B6的活性形式)生产中必需酶(pdxB)的新间接替代品(thiG),我们通过多拷贝抑制实验验证了这一点。我们进行了thiG的结构分析,以确定其潜在的混杂活性位点,我们通过灭活相关残基并显示替代活性丧失来进行实验验证。因此,该研究是一个成功的例子,其中计算研究导致对关键代谢酶的间接混杂替代的基于网络的识别,而这将很难直接识别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号