首页> 美国卫生研究院文献>PLoS Computational Biology >Modelling Feedback Excitation, Pacemaker Properties and Sensory Switching of Electrically Coupled Brainstem Neurons Controlling Rhythmic Activity
【2h】

Modelling Feedback Excitation, Pacemaker Properties and Sensory Switching of Electrically Coupled Brainstem Neurons Controlling Rhythmic Activity

机译:建模反馈反馈激励,起搏器特性和控制节律活动的电耦合脑干神经元的感官转换。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

What cellular and network properties allow reliable neuronal rhythm generation or firing that can be started and stopped by brief synaptic inputs? We investigate rhythmic activity in an electrically-coupled population of brainstem neurons driving swimming locomotion in young frog tadpoles, and how activity is switched on and off by brief sensory stimulation. We build a computational model of 30 electrically-coupled conditional pacemaker neurons on one side of the tadpole hindbrain and spinal cord. Based on experimental estimates for neuron properties, population sizes, synapse strengths and connections, we show that: long-lasting, mutual, glutamatergic excitation between the neurons allows the network to sustain rhythmic pacemaker firing at swimming frequencies following brief synaptic excitation; activity persists but rhythm breaks down without electrical coupling; NMDA voltage-dependency doubles the range of synaptic feedback strengths generating sustained rhythm. The network can be switched on and off at short latency by brief synaptic excitation and inhibition. We demonstrate that a population of generic Hodgkin-Huxley type neurons coupled by glutamatergic excitatory feedback can generate sustained asynchronous firing switched on and off synaptically. We conclude that networks of neurons with NMDAR mediated feedback excitation can generate self-sustained activity following brief synaptic excitation. The frequency of activity is limited by the kinetics of the neuron membrane channels and can be stopped by brief inhibitory input. Network activity can be rhythmic at lower frequencies if the neurons are electrically coupled. Our key finding is that excitatory synaptic feedback within a population of neurons can produce switchable, stable, sustained firing without synaptic inhibition.
机译:哪些细胞和网络特性可以通过短暂的突触输入启动和停止可靠的神经节律生成或放电?我们调查脑干神经元的电耦合人口中驱动年轻青蛙t游泳运动的节律性活动,以及如何通过短暂的感觉刺激来开启和关闭活动。我们在30后脑和脊髓的一侧建立了30个电耦合条件起搏器神经元的计算模型。基于对神经元特性,种群大小,突触强度和连接的实验估计,我们表明:神经元之间的持久,相互,谷氨酸能激发使网络能够在短暂的突触激发后以游泳频率维持有节奏的起搏器发射;活动持续,但没有电耦合,心律消失; NMDA电压依赖性使产生持续节律的突触反馈强度范围加倍。通过短暂的突触激发和抑制,可以在短等待时间内打开和关闭网络。我们证明,由谷氨酸能兴奋性反馈耦合的普通霍奇金-赫克斯利型神经元的人口可以产生持续的异步激发突触打开和关闭。我们得出结论,短暂的突触激发后,具有NMDAR介导的反馈激发的神经元网络可以产生自我维持的活动。活动的频率受到神经元膜通道动力学的限制,可以通过短暂的抑制性输入来停止。如果神经元电耦合,则网络活动在较低的频率下可能有节奏。我们的主要发现是,神经元群体中的兴奋性突触反馈可产生可切换,稳定,持续的放电而无突触抑制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号