首页> 美国卫生研究院文献>Hogrefe OpenMind >Single- and Dual-Process Models of Biased ContingencyDetection
【2h】

Single- and Dual-Process Models of Biased ContingencyDetection

机译:偏向偶然性的单过程和双过程模型检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

>Abstract. Decades of research in causal and contingency learning show that people’s estimations of the degree of contingency between two events are easily biased by the relative probabilities of those two events. If two events co-occur frequently, then people tend to overestimate the strength of the contingency between them. Traditionally, these biases have been explained in terms of relatively simple single-process models of learning and reasoning. However, more recently some authors have found that these biases do not appear in all dependent variables and have proposed dual-process models to explain these dissociations between variables. In the present paper we review the evidence for dissociations supporting dual-process models and we point out important shortcomings of this literature. Some dissociations seem to be difficult to replicate or poorly generalizable and others can be attributed to methodological artifacts. Overall, we conclude that support for dual-process models of biased contingency detection is scarce and inconclusive.
机译:>摘要。因果和偶发性学习的数十年研究表明,人们对两个事件之间的偶然性程度的估计很容易因这两个事件的相对概率而产生偏差。如果两个事件频繁发生,那么人们往往会高估它们之间偶然性的强度。传统上,已根据相对简单的学习和推理的单过程模型来解释这些偏见。但是,最近,一些作者发现这些偏差并没有出现在所有因变量中,并且已经提出了双过程模型来解释变量之间的这些分离。在本文中,我们回顾了支持双过程模型的解离的证据,并指出了该文献的重要缺点。一些分离似乎很难复制或难以推广,而其他分离则可以归因于方法学上的伪像。总体而言,我们得出结论,对有偏向性偶发事件检测的双过程模型的支持很少且没有定论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号