class='head no_bottom_margin' id='sec1title'>Int'/> Phase Transition of a Disordered Nuage Protein Generates Environmentally Responsive Membraneless Organelles
首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Phase Transition of a Disordered Nuage Protein Generates Environmentally Responsive Membraneless Organelles
【2h】

Phase Transition of a Disordered Nuage Protein Generates Environmentally Responsive Membraneless Organelles

机译:紊乱的蛋白蛋白质的相变产生对环境敏感的无膜细胞器。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionBiochemical reactions in the cell frequently have mutually exclusive solution requirements, leading to a need to keep them spatially separated. Membrane encapsulation is a commonly used strategy in roles ranging from controlling the flow of genetic information, via the nucleus and the ER, to maintaining the isolated acidic environment within a lysosome. An alternative strategy involves the formation of membraneless, proteinaceous organelles, including the prominent nucleolus (), PML bodies (), Cajal bodies () and nuclear speckles () in the nucleus, and P bodies and both stress and germ granules in the cytoplasm. These cellular structures have been described as coacervates () and are optically resolvable as spherical micron-sized droplets. The absence of a surrounding membrane enables these organelles to rapidly assemble or dissolve following changes in the cell’s environment and in response to intracellular signals, critical for cellular integrity and homeostasis () ().A striking feature of membraneless organelles is that their largely proteinaceous interior partially excludes the bulk aqueous phase (). Such organelles behave as liquid droplets. Fluorescence recovery after photobleaching (FRAP) experiments interrogating organelles such as the nucleolus and Cajal bodies indicate that their constituent molecules internally diffuse rapidly (), and P-granules, the worm analog of mammalian nuage or germ granules, condense from a pool of diffuse constituents following specific biological cues (). Moreover, spherical nucleoli of the amphibian oocyte have been observed to coalesce when in close contact and show a size distribution that obeys a simple power law, indicating the formation of liquid droplets (). On a residue level, sequences of low complexity, such as repeated RG, QN, and YG repeats, are important for forming RNA granules, stress granules and P bodies (). An understanding of the interactions that stabilize such structures and regulate their biogenesis, as well as a rationale for their biochemical function, has remained elusive.To address these questions, we have studied a dominant protein constituent of a membraneless organelle as a model. Ddx4 proteins are essential for the assembly and maintenance of the related nuage in mammals, P-granules in worms, and pole plasm and polar granules in flies (). This epigenetically crucial nuage/chromatoid body (CB) family of membraneless organelles hosts components of an RNAi pathway, guarding spermatocytes and spermatids against the deleterious activity of transposable elements (). Typical of non-membrane encapsulated organelles, nuages are generally spherical and dynamically change in number, size, and composition over their lifecycle (href="#bib38" rid="bib38" class=" bibr popnode">Meikar et al., 2011), appearing first in the juxtanuclear cytoplasm of early spermatocytes, moving toward the base of the flagellum during spermatogenesis before finally dispersing. A primary constituent of nuage is Ddx4 (href="#bib33" rid="bib33" class=" bibr popnode">Kotaja et al., 2006). In addition to a central DEAD-box RNA helicase domain that uses ATP to unwind short RNA duplexes, Ddx4 has extended N and C termini that are predicted to be intrinsically disordered (href="/pmc/articles/PMC4352761/figure/fig1/" target="figure" class="fig-table-link figpopup" rid-figpopup="fig1" rid-ob="ob-fig1" co-legend-rid="lgnd_fig1">Figures 1A and href="#app2" rid="app2" class=" sec">S2) (href="#bib22" rid="bib22" class=" bibr popnode">Forman-Kay and Mittag, 2013).href="/pmc/articles/PMC4352761/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1">class="inline_block ts_canvas" href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=4352761_gr1.jpg" target="tileshopwindow">target="object" href="/pmc/articles/PMC4352761/figure/fig1/?report=objectonly">Open in a separate windowclass="figpopup" href="/pmc/articles/PMC4352761/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1">Figure 1Ddx4 Spontaneously Self-Assembles to Form Organelles in Live Cells(A) Evolutionary relationships between the disordered regions of Ddx4 homologs and their domain architectures. Disordered regions (green) and locations of DEAD-box helicase domains (brown) are indicated.(B) Schematic showing the DEAD-box helicase domain of Ddx4 replaced with YFP before being transfected into HeLa cells. Ddx4YFP organelles appear over time.(C) Differential interference contrast (DIC) and corresponding extended focus fluorescence intensity images of a HeLa cell expressing Ddx4YFP. Ddx4YFP forms dense, spherical organelles in the nucleus. Cells were stained with antibodies to visualize nucleoli, PML bodies, nuclear speckles, and Cajal bodies as indicated, revealing that Ddx4 organelles are entirely distinct from these other bodies.(D) The variation in total droplet volume with time is explained by the Avrami equation for nucleated growth (href="#app2" rid="app2" class=" sec">Supplemental Experimental Procedures Section 5). The time is measured from the appearance of the first droplet.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介细胞中的生化反应通常具有互斥的解决方案要求,因此需要保持它们在空间上是分开的。膜封装是一种常用的策略,其作用范围从控制遗传信息通过细胞核和ER的流动到维持溶酶体中孤立的酸性环境。另一种策略是在细胞核中形成无膜的蛋白质性细胞器,包括突出的核仁,PML体,Cajal体和核斑点(P),以及P体以及细胞质中的压力和胚芽颗粒。这些细胞结构已被描述为凝聚层(),并且可以光学拆分为球形微米大小的液滴。周围膜的缺失使这些细胞器能够随着细胞环境的变化以及对细胞内信号的响应而迅速组装或溶解,这对于细胞的完整性和体内平衡至关重要()()。无膜细胞器的一个显着特征是它们的大部分蛋白质内部部分排除本体水相()。这样的细胞器表现为液滴。讯问细胞器(例如核仁和Cajal体)的光漂白(FRAP)实验后的荧光恢复表明,它们的组成分子在内部快速扩散(),而P-颗粒(哺乳动物纽格或胚芽颗粒的蠕虫类似物)从一组分散的成分中凝结遵循特定的生物学线索()。此外,已经观察到两亲卵母细胞的球形核仁在紧密接触时会聚结,并显示出遵循简单幂律的大小分布,表明形成了液滴()。在残基水平上,低复杂度的序列(例如重复的RG,QN和YG重复序列)对于形成RNA颗粒,应激颗粒和P体至关重要。关于稳定这些结构并调节其生物发生的相互作用以及其生化功能的原理的了解仍然难以捉摸。为解决这些问题,我们研究了无膜细胞器的主要蛋白质成分作为模型。 Ddx4蛋白对于哺乳动物相关小节的组装和维持,蠕虫中的P颗粒以及果蝇中的极浆和极粒至关重要。这种表观遗传学上至关重要的无膜细胞器的nuage / chromatoid体(CB)家族承载着RNAi途径的组成部分,保护精子细胞和精子细胞免受转座因子的有害活性。 nuage通常是非膜封装的细胞器,通常是球形的,并且在其生命周期中会动态改变数量,大小和组成(href="#bib38" rid="bib38" class=" bibr popnode"> Meikar等。 ,2011 ),最早出现在早期精母细胞的近核细胞质中,在精子发生过程中向鞭毛基部移动,最后散布。 nuage的主要组成部分是Ddx4(href="#bib33" rid="bib33" class=" bibr popnode"> Kotaja等人,2006 )。除了使用ATP展开短RNA双链体的中央DEAD-box RNA解旋酶结构域之外,Ddx4还扩展了N和C末端,这些末端被认为是内在无序的(href =“ / pmc / articles / PMC4352761 / figure / fig1 /“ target =” figure“ class =” fig-table-link figpopup“ rid-figpopup =” fig1“ rid-ob =” ob-fig1“ co-legend-rid =” lgnd_fig1“>图1 A和href="#app2" rid="app2" class=" sec"> S2 )(href="#bib22" rid="bib22" class=" bibr popnode"> Forman-Kay和米塔格,2013 )。<!-fig ft0-> <!-fig mode = article f1-> href =“ / pmc / articles / PMC4352761 / figure / fig1 /” target =“ figure “ rid-figpopup =” fig1“ rid-ob =” ob-fig1“> <!-fig / graphic | fig / alternatives / graphic mode =” anchored“ m1-> class =” inline_block ts_canvas“ href = “ /core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=4352761_gr1.jpg” target =“ tileshopwindow”> target =“ object “ href =” / pmc / articles / PMC4352761 / figure / fig1 /?report = objectonly“>在单独的窗口中打开 class =” figpopup“ href =” / pmc / articles / PMC4352761 / figure / fig1 /“ target =” figure“ rid-figpopup =” fig1“ rid-ob =” ob-fig1“>图1 <!-标题a7-> Ddx4自发地自组装成表格活细胞中的细胞器(A)Ddx4同源物无序区域与其域结构之间的进化关系。指出了DEAD-box解旋酶结构域的无序区域(绿色)和位置(棕色)。(B)示意图显示了在被转染到HeLa细胞之前,被YFP取代的Ddx4的DEAD-box解旋酶结构域。 Ddx4 YFP 细胞器随时间出现。(C)表达Ddx4 YFP 的HeLa细胞的微分干涉对比(DIC)和相应的扩展焦点荧光强度图像。 Ddx4 YFP 在细胞核中形成致密的球形细胞器。如图所示,用抗体对细胞进行染色以可视化核仁,PML体,核斑点和Cajal体,表明Ddx4细胞器与这些其他体完全不同。(D)总液滴体积随时间的变化由Avrami方程解释(href="#app2" rid="app2" class=" sec">补充实验程序第5节)。从第一滴的出现开始测量时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号