class='head no_bottom_margin' id='sec1title'>Int'/> Mechanism of UCH-L5 Activation and Inhibition by DEUBAD Domains in RPN13 and INO80G
首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Mechanism of UCH-L5 Activation and Inhibition by DEUBAD Domains in RPN13 and INO80G
【2h】

Mechanism of UCH-L5 Activation and Inhibition by DEUBAD Domains in RPN13 and INO80G

机译:RPN13和INO80G中DEUBAD域激活和抑制UCH-L5的机制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionThe ubiquitin conjugation machinery regulates almost every process in the eukaryotic cell. Deubiquitinating enzymes (DUBs) are a critical component of the machinery since they can remove ubiquitin adducts and thereby control the level of ubiquitin signals (). In accordance with their important roles, DUBs are frequently deregulated in human pathologies including cancer and neurological disease (), making DUBs potential prime targets for therapeutic intervention.The level of the intrinsic DUB activity is important and requires precise control. For a subset of DUBs, there is emerging evidence that the catalytic activity can be modulated by regulatory proteins or by internal domains (). Notable examples include USP7 activation by its HUBL domain and GMPS (), USP1 activation by UAF1 (), and Ubp8 activation in the SAGA complex (). The most striking example is UCH-L5, for which both activation and inhibition have been observed () by two different proteins, RPN13 (ADRM1) and INO80G (NFRKB), respectively.Understanding the mechanisms of DUB activation is important for interpreting their roles in specific cellular contexts. Mechanistic insight into regulatory mechanisms also can provide vital information for the development of inhibitors or activators. So far, the only available crystal structure of a DUB-activator complex is that of the SAGA DUB module (), but no structure is available for its inactive state. Due to this lack of structural data, detailed mechanisms of DUB regulation are still poorly understood.UCH-L5 (UCH37) is a cysteine protease of the ubiquitin C-terminal hydrolase (UCH) family of DUBs, which also includes UCH-L1, UCH-L3, and BAP1. UCH-L5 is overexpressed in several carcinomas () and knockout of the gene is embryonically lethal in mice (). Functionally, it has been linked to TGF-β signaling, Alzheimer’s disease, and longevity (). UCH-L5 constitutes a component of proteasomes and INO80 chromatin remodeling complexes, where it is activated and inhibited, respectively.As a non-essential component of the proteasome 19S regulatory particle, UCH-L5 catalyzes K48-linked polyubiquitin hydrolysis. This activity requires the RPN13 subunit whose C-terminal domain binds UCH-L5 (). In vitro, RPN13 is able to directly promote UCH-L5 activity against a minimal substrate ().UCH-L5 has a less well-defined role in metazoan INO80 chromatin remodeling complexes. INO80 is an essential determinant of embryonic stem cell identity () and participates in the DNA damage response (), but the function of the metazoan-specific subunits, such as INO80G, is poorly defined. A recent report has implicated UCH-L5 and INO80G as key factors of the DNA double-strand-break response (href="#bib39" rid="bib39" class=" bibr popnode">Nishi et al., 2014). Interestingly, in the context of the INO80 complex, the DUB activity of UCH-L5 is inhibited by the INO80G subunit (href="#bib56" rid="bib56" class=" bibr popnode">Yao et al., 2008). Intriguingly, an artificial shorter version of INO80G was found to activate UCH-L5 in vitro (href="#bib56" rid="bib56" class=" bibr popnode">Yao et al., 2008).The UCH enzymes have a small highly conserved papain-like catalytic domain (CD) characterized by a flexible active site cross-over loop (CL). The CL is thought to select substrates according to leaving group size (href="#bib40" rid="bib40 bib57" class=" bibr popnode">Popp et al., 2009; Zhou et al., 2012). In UCH-L5 and UCH family member BAP1 the CL is relatively large, enabling them to process larger substrates (href="#bib57" rid="bib57" class=" bibr popnode">Zhou et al., 2012).Within the UCH family UCH-L5 and BAP1 are close relatives. BAP1 is a critical tumor suppressor whose regulation is important for proper gene regulation (href="#bib5" rid="bib5 bib22 bib52" class=" bibr popnode">Carbone et al., 2013; Goldstein, 2011; White and Harper, 2012). UCH-L5 and BAP1 share an unusual C-terminal helical extension, called ULD (href="#bib36" rid="bib36" class=" bibr popnode">Misaghi et al., 2009). The ULD domain could mediate protein-protein interactions, including higher-order homo-oligomerization (href="#bib4" rid="bib4 bib25" class=" bibr popnode">Burgie et al., 2012; Jiao et al., 2014), and was proposed to act as an auto-inhibitory module (href="#bib55" rid="bib55" class=" bibr popnode">Yao et al., 2006).Like UCH-L5, BAP1 can be activated by a regulatory protein, in this case ASX, to promote H2A deubiquitination (href="#bib45" rid="bib45" class=" bibr popnode">Scheuermann et al., 2010). Phylogenetic analyses have uncovered a conserved domain within the UCH regulatory proteins RPN13, INO80G, and ASX, which was named the DEUBAD domain (href="#bib44" rid="bib44" class=" bibr popnode">Sanchez-Pulido et al., 2012). As all three proteins affect UCH activity, it was proposed that the DEUBAD domain is responsible for this modulation. The conservation suggests a common mechanism of regulation, but where ASX and RPN13 activate their cognate DUB, INO80G inhibits it. Thus, the DEUBAD domain has shifted from activator to inhibitor mode. The mechanistic details of this dual mode of action of the DEUBAD domains are unclear.Here we present structural and functional analyses that explain how DEUBAD domains can switch UCH-L5 activity and thus provide either positive or negative regulation. We show how the DEUBAD domain in RPN13 activates UCH-L5 by tuning the conformation of structural elements in UCH-L5, and inhibits in INO80G, where it exploits molecular mimicry and UCH-L5 conformational plasticity to prevent ubiquitin docking and catalysis. We also show how the inhibitory domain in INO80G has retained the ability to activate, by its N-terminal INO80Gshort region, and identify the structural elements in the DEUBAD domains that confer the activating or inhibitory effects on UCH-L5 enzymatic activity. Our data show that this remarkable tuning of activity involves large conformational changes and is mediated by precise positioning of both the UCH-L5 C-terminal ULD and active site CL.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介泛素结合机制几乎可以调控真核细胞中的每个过程。去泛素化酶(DUBs)是该机制的关键组成部分,因为它们可以去除泛素加合物,从而控制泛素信号的水平()。根据其重要作用,DUB在包括癌症和神经系统疾病在内的人类病理中经常被放松调节,使DUB成为治疗干预的潜在主要靶标。固有DUB活性水平很重要,需要精确控制。对于DUB的一个子集,新出现的证据表明催化活性可以通过调节蛋白或内部结构域()进行调节。值得注意的例子包括USP7的HUBL结构域和GMPS激活,USP1的UAF1激活以及SAGA复合体中的Ubp8激活。最引人注目的例子是UCH-L5,其活化和抑制作用分别通过两种不同的蛋白质RPN13(ADRM1)和INO80G(NFRKB)观察到。了解DUB活化的机制对于解释它们在细胞中的作用很重要。具体的细胞环境。对调节机制的机械洞察力还可以为抑制剂或激活剂的开发提供重要信息。到目前为止,DUB-活化剂复合物的唯一可用晶体结构是SAGA DUB模块()的晶体结构,但是没有结构可用于其非活性状态。由于缺乏结构数据,对DUB调控的详细机制仍知之甚少.UCH-L5(UCH37)是DUB泛素C末端水解酶(UCH)家族的半胱氨酸蛋白酶,还包括UCH-L1,UCH -L3和BAP1。 UCH-L5在几种癌中过表达(),并且该基因的敲除在小鼠中具有胚胎致死性()。从功能上讲,它与TGF-β信号传导,阿尔茨海默氏病和长寿有关()。 UCH-L5分别是蛋白酶体和INO80染色质重塑复合物的一个组成部分,在其中被激活和抑制。UCH-L5作为蛋白酶体19S调控颗粒的非必需组分,催化K48连接的多泛素水解。此活动需要RPN13亚基,其C端结构域与UCH-L5()结合。在体外,RPN13能够直接促进UCH-L5对最小底物的活性(UCH-L5在后生动物INO80染色质重塑复合物中的作用不太明确)。 INO80是胚胎干细胞身份的重要决定因素(),并参与DNA损伤反应(),但是后生动物特异性亚基(例如INO80G)的功能定义不清。最近的一份报告暗示UCH-L5和INO80G是DNA双链断裂反应的关键因素(href="#bib39" rid="bib39" class=" bibr popnode"> Nishi et al。,2014 < / a>)。有趣的是,在INO80复合物的情况下,UCH-L5的DUB活性受到INO80G亚基的抑制(href="#bib56" rid="bib56" class=" bibr popnode"> Yao等,2008 )。有趣的是,发现了一个人造短版的INO80G在体外激活UCH-L5(href="#bib56" rid="bib56" class=" bibr popnode"> Yao等,2008 )。 UCH酶具有一个小的高度保守的木瓜蛋白酶样催化结构域(CD),其特征是具有灵活的活性位点交叉环(CL)。据认为,CL根据离开组的大小来选择底物(href="#bib40" rid="bib40 bib57" class=" bibr popnode"> Popp等,2009; Zhou等,2012 )。在UCH-L5和UCH家族成员BAP1中,CL相对较大,使它们能够处理更大的基板(href="#bib57" rid="bib57" class=" bibr popnode"> Zhou等人,2012 Carbone等人,2013; Goldstein,2011; White和Harper,2012年)。 UCH-L5和BAP1共享一个不寻常的C端螺旋扩展,称为ULD(href="#bib36" rid="bib36" class=" bibr popnode"> Misaghi等,2009 )。 ULD结构域可以介导蛋白质-蛋白质相互作用,包括更高阶的均聚(href="#bib4" rid="bib4 bib25" class=" bibr popnode"> Burgie等,2012; Jiao等。 ,2014 ),并被提议用作自动抑制模块(href="#bib55" rid="bib55" class=" bibr popnode"> Yao等,2006 )。就像UCH-L5一样,BAP1可以被调节蛋白(在本例中为ASX)激活,以促进H2A去泛素化(href="#bib45" rid="bib45" class=" bibr popnode"> Scheuermann等。,2010 )。系统发育分析已发现UCH调节蛋白RPN13,INO80G和ASX中的保守结构域,称为DEUBAD结构域(href="#bib44" rid="bib44" class=" bibr popnode"> Sanchez-Pulido等等,2012 )。由于所有三种蛋白质均影响UCH活性,因此有人提出DEUBAD结构域负责这种调节。保守提示了一种通用的调节机制,但是当ASX和RP​​N13激活其同源DUB时,INO80G会抑制它。因此,DEUBAD结构域已从激活剂模式转变为抑制剂模式。目前尚不清楚DEUBAD结构域的双重作用机制的机械细节,在此我们进行结构和功能分析,以解释DEUBAD结构域如何改变UCH-L5活性,从而提供正调控或负调控。我们展示了RPN13中的DEUBAD域如何通过调节UCH-L5中的结构元件的构象激活UCH-L5,并抑制INO80G,在那里它利用分子模拟和UCH-L5构象可塑性来防止泛素对接和催化。我们还显示了INO80G中的抑制域如何保留其N端INO80Gshort区域激活的能力,并确定DEUBAD域中赋予UCH-L5酶促活性的激活或抑制作用的结构元件。我们的数据表明,这种显着的活性调节涉及大的构象变化,并且由UCH-L5 C端ULD和活性位点CL的精确定位介导。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号