首页> 美国卫生研究院文献>Elsevier Sponsored Documents >The Dynamic Regulatory Genome of Capsaspora and the Origin of Animal Multicellularity
【2h】

The Dynamic Regulatory Genome of Capsaspora and the Origin of Animal Multicellularity

机译:Capsaspora的动态调控基因组和动物多细胞性的起源。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionA defining feature of multicellular animals is their capacity to generate multiple specialized cell types through temporally and spatially regulated developmental programs. These programs of individual cell differentiation involve the generation of cell-specific transcriptional profiles. Recent genomic analyses, however, have shown that the unicellular ancestor of Metazoa already had a complex gene repertoire involved in multicellular functions, including specific differentiation programs (, , , , , ).Since the origin of animals was not solely dependent on the appearance of new genes, it is likely that animal evolution involved a shift in the genome regulatory capabilities required to generate cell-type-specific transcriptional profiles during animal development. In animals, these profiles are established and maintained by a complex combination of chromatin regulatory dynamics, distal cis-regulatory elements, and transcription factor networks (, , , , , ). Interestingly, a recent analysis of an early branching and morphologically simple animal, the cnidarian Nematostella vectensis, has shown that cnidarians and bilaterians share a conserved gene regulatory landscape (). However, it is unclear whether these ancient genome regulatory features are animal innovations or whether they were already present in the unicellular ancestor of Metazoa.To determine the timing and importance of regulatory changes in the origin of Metazoa, we need to unravel the genomic regulation of the extant animal relatives. Among the closest extant unicellular relatives of Metazoa, the amoeboid filasterean Capsaspora owczarzaki (herein Capsaspora), has the richest repertoire of transcription factors described to date (). These include genes, such as Brachyury, Myc, and Runx, that are essential for animal development. Moreover, Capsaspora is known to differentiate into three temporal life stages that are transcriptionally tightly regulated (). These temporal cell types include (1) a filopodiated amoeba, which corresponds to the proliferative trophic stage, (2) an aggregative multicellular stage, in which the cells produces an extracellular matrix, and (3) a cystic resistance form without filopodia (see an schematic representation of the life cycle in href="/pmc/articles/PMC4877666/figure/fig3/" target="figure" class="fig-table-link figpopup" rid-figpopup="fig3" rid-ob="ob-fig3" co-legend-rid="lgnd_fig3">Figure 3). Its key phylogenetic position as the sister group of animals and choanoflagellates, its rich gene repertoire, and the observed regulatory capabilities of Capsaspora, therefore, make it an ideal candidate to explore the origin of animal genome regulation.href="/pmc/articles/PMC4877666/figure/fig3/" target="figure" rid-figpopup="fig3" rid-ob="ob-fig3">class="inline_block ts_canvas" href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=4877666_gr3.jpg" target="tileshopwindow">target="object" href="/pmc/articles/PMC4877666/figure/fig3/?report=objectonly">Open in a separate windowclass="figpopup" href="/pmc/articles/PMC4877666/figure/fig3/" target="figure" rid-figpopup="fig3" rid-ob="ob-fig3">Figure 3Dynamic Chromatin Modifications(A) Boxplots showing hPTMs coverage levels in differentially expressed genes between stages, as indicated above each boxplot. The p value is indicated for the Wilcoxon signed-rank test.(B) Illustrative examples of dynamic chromatin modifications in Capsaspora. Different genomic windows show normalized coverage for different chromatin features and their dynamic association with gene expression. For each feature, the top track corresponds to the filopodial stage, the middle track to the aggregative stage, and the bottom track to the cystic stage.(C) Histone deacetylase inhibition experiments. Pictures of Capsaspora cells at different time points of incubation with DMSO (negative control) and TSA 3 μM. Transition from cystic to filopodial stage is blocked in the TSA-treated cells. Scale bar, 10 μm.(D) Western blot against total H3 and H3K27ac on histone extracts from control cells (DMSO) and cells treated with 0.5 and 3 μM TSA. White line indicates a lane was removed.(E) Gene expression distributions from biological replicates of control (DMSO, gray colors) and TSA-treated (red colors) cells. Notice the decrease in the fraction of non-expressed genes and the general shift in the distribution of TSA-treated cells.See also href="/pmc/articles/PMC4877666/figure/figs2/" target="figure" class="fig-table-link figpopup" rid-figpopup="figs2" rid-ob="ob-figs2" co-legend-rid="lgnd_figs2">Figures S2 and href="/pmc/articles/PMC4877666/figure/figs3/" target="figure" class="fig-table-link figpopup" rid-figpopup="figs3" rid-ob="ob-figs3" co-legend-rid="lgnd_figs3">​andS3S3.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介多细胞动物的一个定义特征是它们能够通过暂时和间接地产生多种专门的细胞类型空间调控的发展计划。这些个体细胞分化程序涉及细胞特异性转录谱的产生。然而,最近的基因组分析表明,后生动物的单细胞祖先已经具有涉及多细胞功能的复杂基因库,包括特定的分化程序(````````)。新的基因,动物进化可能涉及在动物发育过程中产生细胞类型特异性转录谱所需的基因组调控能力的转变。在动物中,这些特征是通过染色质调节动力学,远侧顺式调节元件和转录因子网络(“,,,,)的复杂组合来建立和维持的。有趣的是,最近对早期分支和形态简单的动物刺胞线虫Nematostella vectensis的分析表明,刺胞和双语动物具有保守的基因调控态势。然而,目前尚不清楚这些古老的基因组调控特征是否是动物创新,还是它们已经存在于后生动物的单细胞祖先中。为了确定后生动物起源中调控变化的时机和重要性,我们需要阐明后生动物的基因组调控。现存的动物亲戚。在现存的最接近的后生单细胞近亲中,变形虫丝状体Capsaspora owczarzaki(此处称为Capsaspora)具有迄今为止描述的最丰富的转录因子库。这些包括对动物发育必不可少的基因,例如Br​​achyury,Myc和Runx。此外,已知Capsaspora可以分为三个暂时的生命阶段,这些阶段在转录上受到严格调节()。这些暂时性细胞类型包括(1)丝状变形虫(对应于增生的营养阶段),(2)聚集性多细胞阶段(其中细胞产生细胞外基质)和(3)没有丝状伪足的囊性耐药形式(参见href =“ / pmc / articles / PMC4877666 / figure / fig3 /” target =“ figure” class =“ fig-table-link figpopup” rid-figpopup =“ fig3” rid-ob = “ ob-fig3” co-legend-rid =“ lgnd_fig3”>图3 )。它作为动植物和鞭毛类动物的姊妹群的关键系统发育位置,丰富的基因库以及观察到的Capsaspora的调控能力,因此使其成为探索动物基因组调控起源的理想人选。<!-fig ft0-- > <!-fig模式=文章f1-> href =“ / pmc / articles / PMC4877666 / figure / fig3 /” target =“ figure” rid-figpopup =“ fig3” rid-ob =“ ob-fig3 “> <!-fig / graphic | fig / alternatives / graphic mode =” anchored“ m1-> class =” inline_block ts_canvas“ href =” / core / lw / 2.0 / html / tileshop_pmc / tileshop_pmc_inline.html? title = Click%20on%20image%20to%20zoom&p = PMC3&id = 4877666_gr3.jpg“ target =” tileshopwindow“> target =” object“ href =” / pmc / articles / PMC4877666 / figure / fig3 /? report = objectonly“>在单独的窗口中打开 class =” figpopup“ href =” / pmc / articles / PMC4877666 / figure / fig3 /“ target =” figure“ rid-figpopup =”图3 <!-标题a7->动态染色质修饰(A)箱形图显示了hPTMs在不同e浓度下的覆盖水平如每个箱形图所示,在各阶段之间表达了基因。 p值用于Wilcoxon符号秩检验。(B)Capsaspora中动态染色质修饰的示例。不同的基因组窗口显示了不同染色质特征的标准化覆盖范围及其与基因表达的动态关联。对于每个特征,顶部轨迹对应于丝虫期,中间轨迹对应于聚集期,而底部轨迹对应于囊性期。(C)组蛋白脱乙酰基酶抑制实验。与DMSO(阴性对照)和TSA 3μM孵育不同时间点的Capsaspora细胞图片。在TSA处理的细胞中,从囊性到梭菌阶段的过渡被阻止。比例尺,10μm。(D)针对对照细胞(DMSO)以及经0.5和3μMTSA处理的细胞的组蛋白提取物上的总H3和H3K27ac的Western印迹。白线表示已删除泳道。(E)对照生物复制品(DMSO)的基因表达分布,灰色)和经过TSA处理(红色)的单元格。请注意,未表达的基因比例减少,TSA处理的细胞分布也发生了总体变化。另请参见href =“ / pmc / articles / PMC4877666 / figure / figs2 /” target =“ figure” class = “ fig-table-link figpopup” rid-figpopup =“ figs2” rid-ob =“ ob-figs2” co-legend-rid =“ lgnd_figs2”>图S2 和href =“ / pmc / articles / PMC4877666 / figure / figs3 /“ target =” figure“ class =” fig-table-link figpopup“ rid-figpopup =” figs3“ rid-ob =” ob-figs3“ co-legend-rid =” lgnd_figs3“>和S3S3 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号