首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Leader Cells Define Directionality of Trunk but Not Cranial Neural Crest Cell Migration
【2h】

Leader Cells Define Directionality of Trunk but Not Cranial Neural Crest Cell Migration

机译:前导细胞定义躯干的方向性但不定义颅神经细胞的迁移

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionCell migration is fundamental for life, from organ formation to tissue repair and regeneration. Cells can migrate individually or collectively. Collective cell migration may endow cancer cells with an increased invasion capacity, which can result in aggressive tumor metastasis (). Cells migrating collectively maintain contact and read guidance cues cooperatively. These groups can adopt a range of spatial arrangements, from small numbers of loosely connected mesenchymal cells, to large masses of tightly associated cells (). Within these arrangements, cells may dynamically change position and rely on cell-cell interaction to determine directionality or be firmly positioned and play specific roles with leading cells directing movement (, ).Neural crest (NC) cells are a highly migratory embryonic population that shares many characteristics of metastatic cells (). Historically, NC cells have been described as cells that migrate individually (), but recent work on chick and Xenopus embryos have demonstrated that cranial NC (CNC) cells migrate collectively. Experiments in Xenopus suggest that a combination of mechanisms imbue the group with polarity, cohesion, and overall directionality (contact inhibition of locomotion, co-attraction, collective chemotaxis, and interaction with surrounding tissues), leading to the proposition that all CNC cells are equally capable of taking the leader position, but it is the interaction between cells that endows the group with polarity and persistent migration (). By contrast, mathematical modeling and gene expression analyses of chick CNC cells have given rise to an alternative proposition, whereby cells adopt different identities depending on their position within the group. Leader cells, at the front of the group, are the only cells capable of directing migration, while trailers are guided by direct contact to a leader or to a trailer cell that has made contact with a leader (, ).While CNC cells have been the subject of intense research, trunk NC (TNC) cells have attracted less attention. TNC cells migrate in two waves. First, they invade the space between the somites and the neural tubeotochord, named the medial pathway. Subsequently, TNC cells move between the ectoderm and the somites into the lateral pathway (). Live imaging in chick has revealed that TNC cells migrating into the medial pathway do so in streams with close cell-cell interaction (, ). Moreover, video-microscopy analysis of zebrafish TNC cells has shown that NC-NC cell contact leads to collapse of membrane protrusions (), similar to the mechanism of contact inhibition during CNC cell migration (). While these studies suggest that cell-cell interaction may also play a role during TNC cell migration, the topology, dynamics, and cellular regulation of migration remain largely unknown.To better understand TNC cell migration and distinguish between the different models proposed to control CNC cell migration, we have conducted in vivo imaging and quantitative analysis in chick and zebrafish embryos. We found that all CNC cells present similar migratory behaviors and that leader cells are not a permanent population at the front of the group: instead, cells readily intermingle as they migrate, integrating into the leading edge only transiently. Moreover, laser ablation experiments in zebrafish embryos show that leader cells are not required for CNC cell directional migration. TNC cells, on the other hand, present a remarkably different migratory behavior. They move as single cell chains with division of labor: leader cells are permanently positioned at the front, instructing directionality to the entire group, while follower cells form the body of the chain and require cell-cell contact for migration. Leader and follower identities are defined before the initiation of migration and remain fixed thereafter. Our data show that TNC cells are a heterogeneous population at the outset of migration, consistent with a mechanism of fate restriction defining their migratory paths and behaviors ().
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介从器官形成到组织修复和再生,细胞迁移对于生命至关重要。细胞可以单独或集体迁移。集体细胞迁移可能使癌细胞具有更高的侵袭能力,这可能导致侵袭性肿瘤转移()。共同迁移的细胞保持联系并合作阅读指导提示。这些小组可以采用一系列空间安排,从少量的松散连接的间充质细胞到大量紧密结合的细胞()。在这些安排中,细胞可以动态改变位置并依靠细胞与细胞之间的相互作用来确定方向性,或者被牢固地定位并与引导运动的前导细胞起特定的作用。神经c(NC)细胞是高度迁徙的胚胎种群,具有转移细胞的许多特征()。从历史上看,NC细胞被描述为可以单独迁移的细胞(),但是最近在雏鸡和爪蟾胚胎上的研究表明颅NC(CNC)细胞可以集体迁移。非洲爪蟾的实验表明,多种机制共同作用于该群体,使其具有极性,内聚力和总体方向性(运动,共吸引,集体趋化性以及与周围组织的相互作用的接触抑制),从而导致所有CNC细胞均等的主张。能够占据领导者的位置,但正是细胞之间的相互作用赋予了群体极性和持久的迁移能力()。相比之下,雏鸡CNC细胞的数学建模和基因表达分析提出了另一种主张,即细胞根据其在组中的位置采用不同的身份。组中最前面的领导单元是唯一能够指导迁移的单元,而拖车通过直接与领导者或与领导者接触的拖车单元(,)直接接触而被引导。大量研究的主题是,躯干NC(TNC)细胞受到的关注较少。 TNC细胞以两波迁移。首先,它们侵入体节和神经管/脊索之间的空间,称为内侧通路。随后,TNC细胞在外胚层之间移动,而体节进入侧向通路()。小鸡的实时成像显示,TNC细胞在细胞间相互作用密切的流中迁移至内侧途径()。此外,对斑马鱼TNC细胞的视频显微镜分析表明,NC-NC细胞的接触会导致膜突起的塌陷(),类似于CNC细胞迁移过程中的接触抑制机制()。尽管这些研究表明细胞间的相互作用也可能在TNC细胞迁移过程中发挥作用,但拓朴,动力学和细胞迁移迁移调控仍然未知,为了更好地了解TNC细胞迁移并区分建议用于控制CNC细胞的不同模型迁移过程中,我们对鸡和斑马鱼的胚胎进行了体内成像和定量分析。我们发现,所有CNC细胞都表现出相似的迁移行为,并且前导细胞不是该组最前面的永久种群:相反,细胞在迁移时很容易混合在一起,只是暂时整合到前缘。此外,斑马鱼胚胎中的激光消融实验表明,前导细胞不是CNC细胞定向迁移所必需的。另一方面,TNC细胞表现出明显不同的迁徙行为。它们按照单细胞链移动并分工:前导细胞永久地位于前面,指示整个群体的方向,而跟随细胞形成链的主体,需要细胞与细胞的接触才能迁移。领导者和跟随者的身份是在迁移开始之前定义的,此后保持不变。我们的数据表明,TNC细胞在迁移开始时是异质种群,这与决定其迁移路径和行为的命运限制机制一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号