首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Combined 1H-Detected Solid-State NMR Spectroscopy and Electron Cryotomography to Study Membrane Proteins across Resolutions in Native Environments
【2h】

Combined 1H-Detected Solid-State NMR Spectroscopy and Electron Cryotomography to Study Membrane Proteins across Resolutions in Native Environments

机译:结合1H检测的固态NMR光谱和电子冷冻层析技术来研究原生环境中不同分辨率的膜蛋白

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionCellular organization relies on compartmentalization by lipid membranes, around which cells install protein networks that establish further function. These membrane proteins are challenging to characterize, as their native environment is complex and heterogeneous. Despite significant work with membrane proteins, the rate at which new structural information is being produced has decreased since 2005 (). Most structural techniques rely on purification of membrane proteins using detergents, followed in some cases by reconstitution into synthetic lipid bilayers. Neither system can fully mimic the complex nature of these proteins' natural environment, and the choice of mimetic can have significant impact on both structure and function (). Purification can also disrupt higher-order structure, including oligomerization (), complex formation (), or metabolic organization (). Therefore, it is desirable to be able to study membrane proteins and their structure in their native membranes. Two methods that allow for structural investigations in native membranes are solid-state nuclear magnetic resonance spectroscopy (ssNMR) and electron cryotomography (cryoET).CryoET and ssNMR provide highly complementary information. CryoET involves imaging individual events, with each molecule potentially in a different state, while ssNMR uses bulk measurements. Motion and dynamics are implicitly recorded in ssNMR experiments from nanosecond to millisecond time scales, while cryoET is limited by the speed at which samples can be vitrified, and is therefore useful for snapshots of biological processes on the seconds-to-hours timescale. Nanometer-scale spatial information is intrinsic to cryoET, while ssNMR is much more sensitive to chemical information on the Ångstrom scale. Furthermore, ssNMR exploits isotope labeling to exclude background signals, whereas cryoET records the full environment, providing macromolecular context for measurements. CryoET and ssNMR have both been used successfully to study fibrillar structures (for a review, see and a more recent study []), secretion systems accessible to in vitro assembly (e.g., , , ) and, most recently, microtubule -protein complexes (). Restraints from ssNMR experiments also recently have been proposed to aid in model refinement from electron cryomicroscopy (cryoEM) ().Magic angle spinning (MAS) ssNMR () is well suited to the analysis of large assemblies such as cell membranes, as it uses spinning to minimize anisotropic interactions. Conventionally, MAS with speeds of <20 kHz, in combination with 13C detection, have been used to study local and overall protein structure and dynamics at atomic resolution in bilayers formed by native bacterial membranes (see, e.g., , , href="#bib27" rid="bib27" class=" bibr popnode">Herzfeld and Lansing, 2002, href="#bib29" rid="bib29" class=" bibr popnode">Hong et al., 2012, href="#bib31" rid="bib31" class=" bibr popnode">Jacso et al., 2012, href="#bib48" rid="bib48" class=" bibr popnode">Miao et al., 2012, href="#bib54" rid="bib54" class=" bibr popnode">Renault et al., 2010, href="#bib75" rid="bib75" class=" bibr popnode">Ward et al., 2015a, href="#bib82" rid="bib82" class=" bibr popnode">Yamamoto et al., 2015). These approaches have been extended to study entire bacterial cell envelopes (href="#bib34" rid="bib34" class=" bibr popnode">Kaplan et al., 2015, href="#bib55" rid="bib55" class=" bibr popnode">Renault et al., 2012a) or mammalian membrane proteins embedded in their natural plasma membrane (href="#bib35" rid="bib35" class=" bibr popnode">Kaplan et al., 2016a, href="#bib36" rid="bib36" class=" bibr popnode">Kaplan et al., 2016b). Recent methodological advancements in Dynamic Nuclear Polarization have improved spectral sensitivity for such samples (href="#bib31" rid="bib31" class=" bibr popnode">Jacso et al., 2012, href="#bib34" rid="bib34" class=" bibr popnode">Kaplan et al., 2015, href="#bib35" rid="bib35" class=" bibr popnode">Kaplan et al., 2016a, href="#bib36" rid="bib36" class=" bibr popnode">Kaplan et al., 2016b, href="#bib56" rid="bib56" class=" bibr popnode">Renault et al., 2012b, href="#bib82" rid="bib82" class=" bibr popnode">Yamamoto et al., 2015). Another area of development is in 1H-detected MAS ssNMR experiments, where the higher gyromagnetic ratio of protons can enhance overall spectroscopic sensitivity provided that MAS spinning rates >40 kHz are used (href="#bib1" rid="bib1" class=" bibr popnode">Andreas et al., 2010, href="#bib3" rid="bib3" class=" bibr popnode">Asami and Reif, 2013, href="#bib46" rid="bib46" class=" bibr popnode">Medeiros-Silva et al., 2016, href="#bib66" rid="bib66" class=" bibr popnode">Sinnige et al., 2014, href="#bib74" rid="bib74" class=" bibr popnode">Ward et al., 2011). With faster spinning, line widths are generally narrower; sample preparation and choice of labels can improve spectral resolution (href="#bib1" rid="bib1" class=" bibr popnode">Andreas et al., 2010, href="#bib3" rid="bib3" class=" bibr popnode">Asami and Reif, 2013, href="#bib18" rid="bib18" class=" bibr popnode">Fricke et al., 2017, href="#bib46" rid="bib46" class=" bibr popnode">Medeiros-Silva et al., 2016, href="#bib66" rid="bib66" class=" bibr popnode">Sinnige et al., 2014, href="#bib74" rid="bib74" class=" bibr popnode">Ward et al., 2011).CryoET has been used to study a wide range of samples, from purified protein complexes to intact viruses, bacteria, and eukaryotic cells, preserved in a frozen, hydrated state that mimics physiological conditions. Briefly, a series of projection images of the same specimen is collected with different orientations relative to the electron beam, followed by computational processing to recover three-dimensional structural information without averaging (for a recent review, see href="#bib8" rid="bib8" class=" bibr popnode">Beck and Baumeister, 2016). As the sample and stage thickness prevent tilting to 90°, there is a “missing wedge” of information in Fourier space. This missing information can be compensated for by averaging together three-dimensional subvolumes extracted from tomograms, which are differentially oriented relative to the missing wedge. CryoET (and other forms of cryoEM) also recently benefited from technological advancements. In particular, direct electron detectors have significantly increased the signal in images (href="#bib45" rid="bib45" class=" bibr popnode">McMullan et al., 2014). Some recent examples of bacterial systems studied by cryoET include work investigating the organization of the pilus in Myxococcus xanthus (href="#bib11" rid="bib11" class=" bibr popnode">Chang et al., 2016), the injection of pathogenic factors into host cells by Chlamydia trachomatis (href="#bib49" rid="bib49" class=" bibr popnode">Nans et al., 2015), and the formation of cellular structures organizing DNA replication during phage infection (href="#bib10" rid="bib10" class=" bibr popnode">Chaikeeratisak et al., 2017).To take full advantage of the complementarity between ssNMR and cryoET, and recent technological improvements in 1H detection and direct detectors, respectively, we set out to create a sample preparation method for the structural and functional study of membrane proteins in their native environment, where the same specimens could be used for both techniques. To maintain the native membrane environment, we avoided altogether the use of detergents or other extraction strategies. These samples also needed to balance the sensitivity of 1H-detected ssNMR experiments with reasonable protein expression levels to avoid excess disruption to the membrane environment. As structure is tightly linked to function, accessibility to the membrane surfaces for functional or binding assays was also an important consideration. Similarly, membrane morphologies needed to be reflective of, e.g., native cell envelope ultrastructure. Furthermore, a range of orientations is desirable to compensate for the missing wedge in cryoET.Here, we present a combined 1H-detected ssNMR and cryoET investigation of the structure, function, and native environment of YidC in Escherichia coli. YidC is an inner membrane protein that helps fold and insert other inner membrane proteins (href="#bib64" rid="bib64" class=" bibr popnode">Scotti et al., 2000). YidC has also been shown to insert some substrates, such as subunit c of ATP synthase, independently of the Sec translocon system (href="#bib42" rid="bib42" class=" bibr popnode">van der Laan et al., 2004). E. coli ribosomes with substrate membrane protein nascent chains (RNCs) bind and insert substrate via purified and reconstituted YidC (href="#bib38" rid="bib38" class=" bibr popnode">Kedrov et al., 2013). The structure of purified YidC was determined in the lipidic cubic phase by X-ray crystallography (href="#bib41" rid="bib41" class=" bibr popnode">Kumazaki et al., 2014) and also, at lower resolution, in nanodiscs bound to RNCs by single-particle cryoEM (href="#bib39" rid="bib39" class=" bibr popnode">Kedrov et al., 2016). YidC can be produced with high yield after overexpression in E. coli, allowing for purified and reconstituted control samples (href="#bib7" rid="bib7" class=" bibr popnode">Baker et al., 2015), and binding of ribosomes to YidC has been shown to differ depending on the membrane mimetic used (href="#bib38" rid="bib38" class=" bibr popnode">Kedrov et al., 2013). We use our hybrid method to show that the conformation and likely dynamics of YidC in native membranes differs from purified and reconstituted YidC, and observe corresponding RNC binding differences.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介细胞组织依赖于脂质膜的区室化作用,细胞周围会安装蛋白质网络,从而进一步建立蛋白质网络功能。这些膜蛋白的特征在于挑战,因为其天然环境复杂且异质。尽管对膜蛋白进行了大量研究,但自2005年以来,产生新结构信息的速度有所降低()。大多数结构技术依靠使用去污剂纯化膜蛋白,然后在某些情况下通过重组为合成脂质双层来完成。这两个系统都不能完全模仿这些蛋白质自然环境的复杂性质,而模拟物的选择对结构和功能都可能产生重大影响()。纯化还会破坏高阶结构,包括低聚(),复合物形成()或代谢组织()。因此,期望能够研究其天然膜中的膜蛋白及其结构。可以在天然膜中进行结构研究的两种方法是固态核磁共振波谱(ssNMR)和电子冷冻层析(cryoET)。CryoET和ssNMR提供了高度互补的信息。 CryoET涉及对单个事件进行成像,每个分子可能处于不同状态,而ssNMR使用批量测量。在ssNMR实验中从纳秒级到毫秒级的时间隐式记录了运动和动力学,而cryoET受样品玻璃化速度的限制,因此对于几秒钟到几小时的时间范围内的生物过程快照非常有用。纳米尺度的空间信息是cryoET固有的,而ssNMR对Ångstrom尺度的化学信息更加敏感。此外,ssNMR利用同位素标记排除背景信号,而cryoET记录整个环境,为测量提供了大分子环境。 CryoET和ssNMR都已成功用于研究纤维结构(综述,请参见和最近的研究[]),体外组装可使用的分泌系统(例如,,)和最近的微管-蛋白复合物( )。最近还提出了ssNMR实验的约束条件,以帮助改进电子冷冻显微镜(cryoEM)()的模型。魔术角旋转(MAS)ssNMR()非常适合用于分析大型组件,例如细胞膜,因为它使用了旋转最小化各向异性相互作用。按照惯例,MAS的速度<20 kHz,结合 13 C检测,已被用于研究由天然细菌膜形成的双层中原子分辨率下的局部和整体蛋白质结构及动力学(请参见,例如,,,href="#bib27" rid="bib27" class=" bibr popnode"> Herzfeld and Lansing,2002 ,href =“#bib29” rid =“ bib29” class =“ bibr popnode“> Hong等人,2012 ,href="#bib31" rid="bib31" class=" bibr popnode"> Jacso等人,2012 ,href =” #bib48“ rid =” bib48“ class =” bibr popnode“>苗等,2012 ,href="#bib54" rid="bib54" class=" bibr popnode">雷诺等。 ,2010 ,href="#bib75" rid="bib75" class=" bibr popnode"> Ward等人,2015a ,href =“#bib82” rid =“ bib82 “ class =” bibr popnode“> Yamamoto等人,2015 )。这些方法已扩展为研究整个细菌细胞包膜(href="#bib34" rid="bib34" class=" bibr popnode"> Kaplan et al。,2015 ,href =“#bib55 “ rid =“ bib55” class =“ bibr popnode”> Renault等人,2012a )或嵌入其天然质膜的哺乳动物膜蛋白(href =“#bib35” rid =“ bib35” class = “ bibr popnode”> Kaplan等人,2016a ,href="#bib36" rid="bib36" class=" bibr popnode"> Kaplan等人,2016b )。动态核极化的最新方法学进展已改善了此类样品的光谱灵敏度(href="#bib31" rid="bib31" class=" bibr popnode"> Jacso等人,2012 ,href = “#bib34” rid =“ bib34” class =“ bibr popnode”> Kaplan等人,2015 ,href="#bib35" rid="bib35" class=" bibr popnode"> Kaplan等人。,2016a ,href="#bib36" rid="bib36" class=" bibr popnode"> Kaplan et al。,2016b ,href =“#bib56” rid =“ bib56“ class =” bibr popnode“>雷诺等人,2012b ,href="#bib82" rid="bib82" class=" bibr popnode">山本等人,2015 )。另一个发展领域是在 1 H检测的MAS ssNMR实验中,如果使用MAS旋转速率> 40 kHz,则较高的质子旋磁比可以增强整体光谱灵敏度(href =“# bib1“ rid =” bib1“ class =” bibr popnode“> Andreas等。,2010 ,href="#bib3" rid="bib3" class=" bibr popnode"> Asami和Reif,2013 ,href =“#bib46” rid =“ bib46” class =“ bibr popnode”> Medeiros-Silva等人,2016 ,href="#bib66" rid="bib66" class=" bibr popnode"> Sinnige等人,2014 ,href="#bib74" rid="bib74" class=" bibr popnode"> Ward等人,2011 )。随着旋转速度的加快,线宽通常会变窄。样品制备和标签选择可以提高光谱分辨率(href="#bib1" rid="bib1" class=" bibr popnode"> Andreas等,2010 ,href =“#bib3” rid =“ bib3” class =“ bibr popnode”> Asami和Reif,2013 ,href="#bib18" rid="bib18" class=" bibr popnode"> Fricke等人,2017 ,href="#bib46" rid="bib46" class=" bibr popnode"> Medeiros-Silva等人,2016 ,href =“#bib66” rid =“ bib66”类=“ bibr popnode”> Sinnige等人,2014 ,href="#bib74" rid="bib74" class=" bibr popnode"> Ward等人,2011 )。CryoET已被用于研究各种样品,从纯化的蛋白质复合物到完整的病毒,细菌和真核细胞,均以模仿生理条件的冷冻,水合状态保存。简要地说,以相对于电子束不同的方向收集同一样本的一系列投影图像,然后进行计算处理以恢复三维结构信息而不进行平均(有关最近的评论,请参见href =“#bib8” rid =“ bib8” class =“ bibr popnode”> Beck and Baumeister,2016 )。由于样品和样品台的厚度可防止倾斜到90°,因此在傅立叶空间中存在“缺失的楔形”信息。可以通过对从断层图提取的三维子体积求平均来补偿这种缺失的信息,这些三维子体积相对于缺失的楔形具有不同的方向。最近,CryoET(和其他形式的cryoEM)也从技术进步中受益。尤其是直接电子检测器已显着增强了图像中的信号(href="#bib45" rid="bib45" class=" bibr popnode"> McMullan等,2014 )。 cryoET研究的细菌系统的一些最新实例包括调查黄色粘球菌菌毛组织的工作(href="#bib11" rid="bib11" class=" bibr popnode"> Chang et al。,2016 ),沙眼衣原体将致病因子注入宿主细胞中(href="#bib49" rid="bib49" class=" bibr popnode"> Nans等,2015 ),噬菌体感染过程中组织DNA复制的细胞结构的变化(href="#bib10" rid="bib10" class=" bibr popnode"> Chaikeeratisak et al。,2017 )。要充分利用两者之间的互补性ssNMR和cryoET以及分别在 1 H检测和直接检测器中进行的最新技术改进,我们着手创建一种样品制备方法,用于在其天然环境中研究膜蛋白的结构和功能,其中两种技术都可以使用相同的样本。为了保持天然的膜环境,我们完全避免使用去污剂或其他提取策略。这些样品还需要平衡 1 H检测的ssNMR实验的灵敏度和合理的蛋白质表达水平,以避免对膜环境的过度破坏。由于结构与功能紧密相连,因此进行功能或结合测定的膜表面可及性也是重要的考虑因素。类似地,膜形态需要反映例如天然细胞包膜的超微结构。此外,我们需要一系列方向来补偿cryoET中缺失的楔形。这里,我们结合 1 H检测到的ssNMR和cryoET研究YidC的结构,功能和天然环境。大肠杆菌。 YidC是一种内膜蛋白,可帮助折叠和插入其他内膜蛋白(href="#bib64" rid="bib64" class=" bibr popnode"> Scotti等,2000 )。还显示YidC可以独立于Sec translocon系统插入一些底物,例如ATP合酶的亚基c(href="#bib42" rid="bib42" class=" bibr popnode"> van der Laan等人。,2004 )。具有底物膜蛋白新生链(RNC)的大肠杆菌核糖体通过纯化和重建的YidC结合并插入底物(href="#bib38" rid="bib38" class=" bibr popnode"> Kedrov等人,2013,< / a>)。纯化的YidC的结构通过X射线晶体学测定在脂质立方相中(href="#bib41" rid="bib41" class=" bibr popnode"> Kumazaki et al。,2014 )和同样,在较低的分辨率下,在通过单粒子cryoEM绑定到RNC的纳米光盘中(href="#bib39" rid="bib39" class=" bibr popnode"> Kedrov等人,2016 )。在大肠杆菌中过量表达后,可以高产量生产YidC,允许使用纯化和重建的对照样品(href="#bib7" rid="bib7" class=" bibr popnode"> Baker等,2015 ),并且已经显示出核糖体与YidC的结合取决于所使用的膜模拟物(href="#bib38" rid="bib38" class=" bibr popnode"> Kedrov等人,2013 )。我们使用杂交方法显示YidC在天然膜中的构象和可能的动力学与纯化和重构的YidC不同,并观察到相应的RNC结合差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号