首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Structural Basis for the Initiation of Glycosaminoglycan Biosynthesis by Human Xylosyltransferase 1
【2h】

Structural Basis for the Initiation of Glycosaminoglycan Biosynthesis by Human Xylosyltransferase 1

机译:通过人类木糖基转移酶1引发的糖胺聚糖生物合成的结构基础。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionProteoglycans (PGs) are a diverse family of glycoproteins characterized by the presence of one or more covalently attached glycosaminoglycan (GAG) chains, which often dominate the biophysical properties and biological functions of PGs. GAGs are polymers of repeating disaccharide units consisting of a hexosamine and a uronic acid sugar; the polymer is modified by sulfation at various positions (, ). Depending on the hexosamine, GAGs are classified as either heparan sulfate (HS) or as chondroitin sulfate (CS) and dermatan sulfate (DS). PGs are present on the cell surface and in the extracellular matrix of all higher animals. They are essential components of extracellular matrices and play important roles in cell adhesion and migration, morphogen and growth factor signaling, immune regulation, and the inflammatory response. PG dysfunction is linked to many conditions with major public health implications, such as arthritis, diabetes, neurodegenerative diseases, atherosclerosis, and cancer (, , ).The GAG component of PGs is synthesized in the Golgi compartment during passage of the core protein through the secretory pathway. HS, CS, and DS are attached to serine residues on the core protein through a common GlcA-β1,3-Gal-β1,3-Gal-β1,4-Xyl-β1-O-Ser tetrasaccharide linker (, ). The linker is synthesized by four glycosyltransferases (GTs) acting sequentially (A); phosphorylation of the xylose by Fam20B is required for addition of the second galactose (, , ). The first enzyme in the pathway, peptide O-xylosyltransferase (XT, EC 2.4.2.26), catalyzes the transfer of xylose from uridine diphosphate (UDP)-α-D-xylose onto serine and thus determines the site(s) of GAG attachment on the core protein. The serine-linked xylose is in β-anomeric configuration and XT is therefore classified as an “inverting” GT (). Caenorhabditis elegans and Drosophila melanogaster have one XT (known as sqv-6 and OXT, respectively), whereas vertebrates have two isozymes, XT1 and XT2 (60% amino acid identity in humans) (, , ). Disruption of tetrasaccharide linker biosynthesis in mice by genetic ablation of the glucuronyl transferase results in embryonic lethality before the 8-cell stage (href="#bib18" rid="bib18" class=" bibr popnode">Izumikawa et al., 2010). The combined function of XT1 and XT2 is expected to be similarly essential, but double-knockout mice have not been described. Genetic screens in zebrafish and mouse have revealed a function of XT1 in chondrocyte maturation during bone development (href="#bib8" rid="bib8" class=" bibr popnode">Eames et al., 2011, href="#bib29" rid="bib29" class=" bibr popnode">Mis et al., 2014). XT2-deficient mice are viable, but develop polycystic liver and kidney disease (href="#bib6" rid="bib6" class=" bibr popnode">Condac et al., 2007). In humans, XYLT1 and XYLT2 mutations cause two rare diseases with skeletal abnormalities, Desbuquois dysplasia type 2 and spondylo-ocular syndrome, respectively (href="#bib5" rid="bib5" class=" bibr popnode">Bui et al., 2014, href="#bib31" rid="bib31" class=" bibr popnode">Munns et al., 2015). The phenotypes suggest that XT1 and XT2 are not fully redundant, consistent with their somewhat different expression patterns (href="#bib8" rid="bib8" class=" bibr popnode">Eames et al., 2011, href="#bib38" rid="bib38" class=" bibr popnode">Roch et al., 2010).href="/pmc/articles/PMC5992326/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1">class="inline_block ts_canvas" href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=5992326_gr1.jpg" target="tileshopwindow">target="object" href="/pmc/articles/PMC5992326/figure/fig1/?report=objectonly">Open in a separate windowclass="figpopup" href="/pmc/articles/PMC5992326/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1">Figure 1Crystal Structure of XT1 Complexed with UDP-Xylose and a Bikunin-Derived Acceptor Peptide(A) Schematic structure of the GAG tetrasaccharide linker. GTs involved in linker biosynthesis are indicated in red. The corresponding gene names are XYLT1 (XT1), XYLT2 (XT2), B4GALT7 (GalT1), B3GALT6 (GalT2), and B3GAT3 (GlcAT1).(B) Crystal structure of human XT1, colored from N terminus (blue) to C terminus (red). UDP-xylose (silver) and peptide >2 (pink) are shown in stick representation, as are the disulfide bonds. See also href="#mmc1" rid="mmc1" class=" supplementary-material">Figure S1.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介蛋白聚糖(PGs)是多种糖蛋白家族,其特征是存在一种或多种共价连接的糖胺聚糖(GAG)链,这些链通常主导PG的生物物理特性和生物学功能。 GAG是重复的二糖单元的聚合物,其由己糖胺和糖醛酸糖组成;聚合物在各个位置()进行硫酸化改性。根据己糖胺,GAGs可分为硫酸乙酰肝素(HS)或硫酸软骨素(CS)和硫酸皮肤素(DS)。 PG存在于所有高等动物的细胞表面和细胞外基质中。它们是细胞外基质的重要组成部分,并在细胞粘附和迁移,形态发生素和生长因子信号传导,免疫调节以及炎症反应中发挥重要作用。 PG功能障碍与许多对公众健康有重大影响的疾病相关,例如关节炎,糖尿病,神经退行性疾病,动脉粥样硬化和癌症(``,'')。PGs的GAG成分是在核心蛋白通过Golgi通道时在高尔基体中合成的。分泌途径。 HS,CS和DS通过常见的GlcA-β1,3-Gal-β1,3-Gal-β1,4-Xyl-β1-O-Ser四糖接头(,)与核心蛋白上的丝氨酸残基连接。接头是由四个依次起作用的糖基转移酶(GT)合成的(A);添加第二个半乳糖(,)需要Fam20B使木糖磷酸化。该途径中的第一个酶是肽O-木糖基转移酶(XT,EC 2.4.2.26),催化木糖从尿苷二磷酸(UDP)-α-D-木糖转移到丝氨酸上,从而确定GAG附着的位点在核心蛋白上。丝氨酸连接的木糖呈β-异头构型,因此XT被归类为“反向” GT()。秀丽隐杆线虫和黑腹果蝇有一个XT(分别称为sqv-6和OXT),而脊椎动物有两个同功酶XT1和XT2(人体内60%的氨基酸同一性)(,,)。葡萄糖醛酸转移酶的基因消融破坏了小鼠四糖接头的生物合成,导致了8细胞阶段之前的胚胎致死率(href="#bib18" rid="bib18" class=" bibr popnode"> Izumikawa et al。, 2010 )。预计XT1和XT2的组合功能同样必不可少,但尚未描述双敲除小鼠。斑马鱼和小鼠的遗传筛查揭示了XT1在骨骼发育过程中的软骨细胞成熟中的功能(href="#bib8" rid="bib8" class=" bibr popnode"> Eames et al。,2011 , href="#bib29" rid="bib29" class=" bibr popnode"> Mis等人,2014 )。缺乏XT2的小鼠是可行的,但会发展成多囊性肝和肾疾病(href="#bib6" rid="bib6" class=" bibr popnode"> Condac等,2007 )。在人类中,XYLT1和XYLT2突变会导致两种罕见的骨骼异常疾病,即Desbuquois发育异常2型和脊柱-眼综合征(href="#bib5" rid="bib5" class=" bibr popnode"> Bui et al 。,2014 ,href="#bib31" rid="bib31" class=" bibr popnode"> Munns et al。,2015 )。该表型表明XT1和XT2并非完全冗余,与其表达方式有所不同(href="#bib8" rid="bib8" class=" bibr popnode"> Eames et al。,2011 ,href="#bib38" rid="bib38" class=" bibr popnode"> Roch等人,2010 )。<!-fig ft0-> <!-fig mode = article f1-> href="/pmc/articles/PMC5992326/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1"> <!-fig / graphic | fig / alternatives / graphic mode =“ anchred” m1-> class =“ inline_block ts_canvas” href =“ / core / lw / 2.0 / html / tileshop_pmc / tileshop_pmc_inline.html?title = Click%20on%20image%20to %20zoom&p = PMC3&id = 5992326_gr1.jpg“ target =” tileshopwindow“> target="object" href="/pmc/articles/PMC5992326/figure/fig1/?report=objectonly">在单独的窗口中打开窗口 class =“ figpopup” href =“ / pmc / articles / PMC5992326 / figure / fig1 /” target =“ figure” rid-figpopup =“ fig1” rid-ob =“ ob-图1 <!-标题a7->与UDP-木糖和Bikunin衍生的XT1的晶体结构受体肽(A)GAG四糖接头的结构示意图。参与连接子生物合成的GT以红色表示。相应的基因名称是XYLT1(XT1),XYLT2(XT2),B4GALT7(GalT1),B3GALT6(GalT2)和B3GAT3(GlcAT1)。(B)人XT1的晶体结构,从N端(蓝色)到C端着色(红色)。棒状图显示了UDP-木糖(银)和肽> 2 (粉红色),以及二硫键。另请参见href="#mmc1" rid="mmc1" class="Supplementary-material">图S1 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号