首页> 美国卫生研究院文献>International Journal of Womens Health >A radiologic-laparoscopic model to predict suboptimal (or complete and optimal) debulking surgery in advanced ovarian cancer: a pilot study
【2h】

A radiologic-laparoscopic model to predict suboptimal (or complete and optimal) debulking surgery in advanced ovarian cancer: a pilot study

机译:放射线-腹腔镜模型预测晚期卵巢癌亚最佳(或完整和最佳)减瘤手术:一项先导研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

>Introduction: Medical models assist clinicians in making diagnostic and prognostic decisions in complex situations. In advanced ovarian cancer, medical models could help prevent unnecessary exploratory surgery. We designed two models to predict suboptimal or complete and optimal cytoreductive surgery in patients with advanced ovarian cancer.>Methods: We collected clinical, pathological, surgical, and residual tumor data from 110 patients with advanced ovarian cancer. Computed tomographic and laparoscopic data from these patients were used to determine peritoneal cancer index (PCI) and lesion size score. These data were then used to construct two-by-two contingency tables and our two predictive models. Each model included three risk score levels; the R4 model also included operative PCI, while the R3 model did not. Finally, we used the original patient data to validate the models (narrow validation).>Results: Our models predicted suboptimal or complete and optimal cytoreductive surgery with a sensitivity of 83% (R4 model) and 69% (R3 model). Our results also showed that PCI>20 was a major risk factor for unresectability.>Conclusion: Our medical models successfully predicted suboptimal or complete and optimal cytoreductive surgery in 110 patients with advanced ovarian cancer. Our models are easy to construct, based on readily available laboratory test data, simple to use clinically, and could reduce unnecessary exploratory surgery in this patient group.
机译:>简介:医学模型可协助临床医生在复杂情况下做出诊断和预后决策。在晚期卵巢癌中,医学模型可以帮助预防不必要的探索性手术。我们设计了两种模型来预测晚期卵巢癌患者的次最佳或完全和最佳的细胞减灭术。>方法:我们收集了110例晚期卵巢癌患者的临床,病理,外科和残余肿瘤数据。这些患者的断层扫描和腹腔镜检查数据用于确定腹膜癌指数(PCI)和病变大小评分。然后,这些数据被用于构建两乘两列的应急表和我们的两个预测模型。每个模型都包括三个风险评分等级; R4模型还包括可操作的PCI,而R3模型则不包括。最后,我们使用原始患者数据来验证模型(窄验证)。>结果:我们的模型预测了次最佳或完全和最佳的细胞减灭术,其敏感性分别为83%(R4模型)和69%( R3模型)。我们的研究结果还表明,PCI> 20是无法切除的主要危险因素。>结论:我们的医学模型成功地预测了110例晚期卵巢癌患者的次佳或完全和最佳的细胞减灭术。基于现成的实验室测试数据,我们的模型易于构建,易于临床使用,并且可以减少该患者组中不必要的探索性手术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号