首页> 美国卫生研究院文献>The ISME Journal >Bacterial growth at −15 °C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1
【2h】

Bacterial growth at −15 °C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1

机译:-15°C时细菌生长;多年冻土细菌嗜盐球菌Or1的分子洞察

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Planococcus halocryophilus strain Or1, isolated from high Arctic permafrost, grows and divides at −15 °C, the lowest temperature demonstrated to date, and is metabolically active at −25 °C in frozen permafrost microcosms. To understand how P. halocryophilus Or1 remains active under the subzero and osmotically dynamic conditions that characterize its native permafrost habitat, we investigated the genome, cell physiology and transcriptomes of growth at −15 °C and 18% NaCl compared with optimal (25 °C) temperatures. Subzero growth coincides with unusual cell envelope features of encrustations surrounding cells, while the cytoplasmic membrane is significantly remodeled favouring a higher ratio of saturated to branched fatty acids. Analyses of the 3.4 Mbp genome revealed that a suite of cold and osmotic-specific adaptive mechanisms are present as well as an amino acid distribution favouring increased flexibility of proteins. Genomic redundancy within 17% of the genome could enable P. halocryophilus Or1 to exploit isozyme exchange to maintain growth under stress, including multiple copies of osmolyte uptake genes (Opu and Pro genes). Isozyme exchange was observed between the transcriptome data sets, with selective upregulation of multi-copy genes involved in cell division, fatty acid synthesis, solute binding, oxidative stress response and transcriptional regulation. The combination of protein flexibility, resource efficiency, genomic plasticity and synergistic adaptation likely compensate against osmotic and cold stresses. These results suggest that non-spore forming P. halocryophilus Or1 is specifically suited for active growth in its Arctic permafrost habitat (ambient temp. ∼−16 °C), indicating that such cryoenvironments harbor a more active microbial ecosystem than previously thought.
机译:从北极高寒多年冻土中分离出来的嗜盐链球菌菌株Or1在-15°C(迄今证明的最低温度)下生长和分裂,在冷冻的永冻土微观世界中在-25 −°C上具有代谢活性。为了了解嗜盐疟原虫Or1如何在零以下和渗透动力学条件下(其天然多年冻土生境)保持活性,我们调查了基因组,细胞生理学和转录组在-15°C和18%NaCl与最佳(25 with°C )温度。低于零的生长与细胞周围包壳的异常细胞包膜特征相吻合,而细胞质膜则被显着重塑,有利于较高的饱和脂肪酸与支链脂肪酸比例。对3.4 Mbp基因组的分析显示,存在一套冷的和渗透压特异性的适应性机制,以及有利于增加蛋白质柔韧性的氨基酸分布。基因组中17%内的基因组冗余可以使嗜盐疟原虫Or1利用同工酶交换来维持胁迫下的生长,包括多拷贝的渗透压摄取基因(Opu和Pro基因)。转录组数据集之间观察到同工酶交换,涉及细胞分裂,脂肪酸合成,溶质结合,氧化应激反应和转录调控的多拷贝基因选择性上调。蛋白质柔韧性,资源效率,基因组可塑性和协同适应能力的结合可能弥补了渗透胁迫和冷胁迫。这些结果表明,非孢子形成的嗜盐假单胞菌Or1特别适合在其北极多年冻土生境(环境温度约为-16°C)中活跃生长,这表明这种低温环境比以前认为的具有更活跃的微生物生态系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号