class='head no_bottom_margin' id='sec1title'>Int'/> Difference between Metal-S and Metal-O Bond Orders: A Descriptor of Oxygen Evolution Activity for Isolated Metal Atom-Doped MoS2 Nanosheets
首页> 美国卫生研究院文献>iScience >Difference between Metal-S and Metal-O Bond Orders: A Descriptor of Oxygen Evolution Activity for Isolated Metal Atom-Doped MoS2 Nanosheets
【2h】

Difference between Metal-S and Metal-O Bond Orders: A Descriptor of Oxygen Evolution Activity for Isolated Metal Atom-Doped MoS2 Nanosheets

机译:金属-S和金属-O键序之间的差异:分离的金属原子掺杂的MoS2纳米片的氧析出活性的描述子。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionThe design of high-performance catalysts for energy conversion and storage is a high priority in light of the popular pursuit of sustainable energy (, , , , ). As a critical process, oxygen evolution reaction (OER) is usually the rate-limiting step for such energy conversions since the kinetics of OER are often unsatisfactory due to the four-electron transfer process, which usually requires a large overpotential to drive the reaction (, , , , , , , ). As a result, the large overpotential ineluctably results in low efficiency. Over the past few years, reports show that different noble-metal-based catalysts have been found to significantly reduce the overpotential of OER. However, these reported noble-metal based catalysts have been limited in their practical applicability owing to their high cost, which hinders the development of energy conversion devices (, , href="#bib38" rid="bib38" class=" bibr popnode">Yu et al., 2018, href="#bib12" rid="bib12" class=" bibr popnode">Guo et al., 2018).An ideal catalyst should possess both high activity and low cost. For this purpose, a great deal of research has been performed to seek highly active materials based on earth-abundant elements. Recently, supported monatomic catalysts have drawn increasing attention because of their high utilization of active sites and the resulting high performance of the OER (href="#bib21" rid="bib21" class=" bibr popnode">Li et al., 2018, href="#bib7" rid="bib7" class=" bibr popnode">Fei et al., 2018, href="#bib37" rid="bib37" class=" bibr popnode">Yan et al., 2018, href="#bib3" rid="bib3" class=" bibr popnode">Chen et al., 2017) and have been considered as promising alternative electrocatalysts for the OER. However, how to rapidly obtain these desired monatomic OER catalysts without tedious “trial and error” remains a problem. An easily obtainable descriptor is urgently required for the rapid screening of desirable high-performance materials (href="#bib16" rid="bib16" class=" bibr popnode">Huang et al., 2017, href="#bib17" rid="bib17" class=" bibr popnode">Jacobs et al., 2018, href="#bib34" rid="bib34" class=" bibr popnode">Wang et al., 2018a, href="#bib35" rid="bib35" class=" bibr popnode">Wang et al., 2018b, href="#bib22" rid="bib22" class=" bibr popnode">Lin et al., 2017, href="#bib6" rid="bib6" class=" bibr popnode">Fang et al., 2017, href="#bib11" rid="bib11" class=" bibr popnode">Gu et al., 2018). By means of a descriptor, we can rapidly evaluate OER activity since obtaining the descriptor value is usually much faster than calculating the Gibbs free energy via frequency calculations. This method would significantly shorten the calculation time and thus reduce the calculation cost. Before experimentally preparing the catalysts, we can first screen out the desired materials quickly based on the descriptor, avoiding tedious trial and error and improve research efficiency. Hence, we seek to better understand the correlation between electrochemical performance and chemical structure by means of high-throughput density functional theory (DFT) calculations owing to their successful applications in material screening and then obtain a credible descriptor of OER activity for surface monatomic materials to predict and design highly active monatomic catalysts, that is, the metal atoms-doped ultrathin MoS2 nanosheets (M-UMONs) detailed in this work. Fortunately, previously reported research provides us with a good reference. For examples, surface oxygen binding energy (href="#bib28" rid="bib28" class=" bibr popnode">Rossmeisl et al., 2007, href="#bib26" rid="bib26" class=" bibr popnode">Man et al., 2011), the enthalpy of a lower to higher oxide transition (href="#bib33" rid="bib33" class=" bibr popnode">Trasatti, 1980), and the 3d electron number (href="#bib2" rid="bib2" class=" bibr popnode">Bockris and Otagawa, 1984) are reported as successful OER activity descriptors. Although these proposed descriptors are not straightforward in their practical application (href="#bib31" rid="bib31" class=" bibr popnode">Suntivich et al., 2011a, href="#bib32" rid="bib32" class=" bibr popnode">Suntivich et al., 2011b), their exploration method and processes offer us much inspiration.In this work, the credibility of our calculations of theoretical overpotentials was first validated when we explored the descriptor based on the DFT calculations. For the validation purpose, more than ten kinds of M-UMONs were prepared and systematically characterized, and the electrochemical experimental results confirmed our calculations. Based on this, different kinds of M-UMONs were theoretically investigated by means of using high-throughput DFT calculations. Our calculation results demonstrated a volcanic-shaped correlation between the activity and metal-sulfur (M-S) bond orders. As the differences between the M-S bond orders and corresponding metal-oxygen (M-O) bond orders increased, the OER performance would decline, meaning that peak activity is predicted to occur when the bond order difference is minimal. More importantly, this successful exploration of the descriptor of OER performance for M-UMONs systems implies this calculation-based method for the exploring of descriptors would provide new promising avenues of research for the development of high-performance OER catalysts.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介设计用于能量转换和存储的高性能催化剂是一项高度优先的工作大众对可持续能源的追求(,,,,)。作为关键过程,析氧反应(OER)通常是此类能量转换的限速步骤,因为由于四电子转移过程,OER的动力学通常不令人满意,这通常需要很大的超电势来驱动反应( ,,,,,,,)。结果,大的过电位不可避免地导致效率低下。在过去的几年中,报告显示已发现不同的贵金属基催化剂可显着降低OER的过电位。然而,这些报道的贵金属基催化剂由于其成本高而在实际应用中受到限制,这阻碍了能量转换装置的发展(,href =“#bib38” rid =“ bib38” class =“ bibr popnode“> Yu等人,2018 ,href="#bib12" rid="bib12" class=" bibr popnode"> Guo等人,2018 )。理想的催化剂应该是具有高活动性和低成本。为了这个目的,已经进行了大量研究以寻找基于富含地球的元素的高活性材料。最近,负载型单原子催化剂因其对活性位点的高利用以及OER的高性能而引起了越来越多的关注(href="#bib21" rid="bib21" class=" bibr popnode"> Li等。 ,2018 ,href="#bib7" rid="bib7" class=" bibr popnode"> Fei et al。,2018 ,href =“#bib37” rid =“ bib37 “ class =” bibr popnode“> Yan等人,2018 ,href="#bib3" rid="bib3" class=" bibr popnode"> Chen等人,2017 )并已被认为是OER的有希望的替代电催化剂。但是,如何快速获得这些所需的单原子OER催化剂而又没有繁琐的“试错”仍然是一个问题。快速筛选所需的高性能材料迫切需要一种容易获得的描述符(href="#bib16" rid="bib16" class=" bibr popnode"> Huang等人,2017 ,< a href =“#bib17” rid =“ bib17” class =“ bibr popnode”> Jacobs et al。,2018 ,href="#bib34" rid="bib34" class=" bibr popnode"> Wang et al。,2018a ,href="#bib35" rid="bib35" class=" bibr popnode"> Wang et al。,2018b ,href =“#bib22” rid =“ bib22” class =“ bibr popnode”> Lin等人,2017 ,href="#bib6" rid="bib6" class=" bibr popnode">方等人,2017 < / a>,href="#bib11" rid="bib11" class=" bibr popnode"> Gu et al。,2018 )。借助描述符,我们可以快速评估OER活性,因为获得描述符值通常比通过频率计算来计算吉布斯自由能快得多。这种方法将大大缩短计算时间,从而降低了计算成本。在实验制备催化剂之前,我们可以先根据描述语快速筛选出所需的材料,避免繁琐的试验和错误并提高研究效率。因此,由于高通量密度泛函理论(DFT)在材料筛选中的成功应用,我们寻求通过高通量密度泛函理论(DFT)计算来更好地理解电化学性能与化学结构之间的关系,然后获得表面单原子材料的OER活性的可靠描述子,以用于预测并设计高活性的单原子催化剂,即本工作中详述的掺杂金属原子的超薄MoS2纳米片(M-UMONs)。幸运的是,以前报道的研究为我们提供了很好的参考。例如,表面氧结合能(href="#bib28" rid="bib28" class=" bibr popnode"> Rossmeisl et al。,2007 ,href =“#bib26” rid =“ bib26“ class =” bibr popnode“> Man等人,2011 ),从低到高的氧化物转变的焓(href =”#bib33“ rid =” bib33“ class =” bibr popnode“ > Trasatti,1980 )和3d电子数(href="#bib2" rid="bib2" class=" bibr popnode"> Bockris和Otagawa,1984 )报告为成功OER活动描述符。尽管这些建议的描述符在实际应用中并不简单(href="#bib31" rid="bib31" class=" bibr popnode"> Suntivich等,2011a ,href =“#bib32 “ rid =” bib32“ class =” bibr popnode“> Suntivich et al。,2011b ),他们的探索方法和过程为我们提供了很多启发。在这项工作中,我们首先验证了我们计算理论超电势的可信度当我们基于DFT计算探索描述符时。出于验证目的制备了十多种M-UMON并进行了系统表征,电化学实验结果证实了我们的计算结果。在此基础上,利用高通量DFT计算方法对不同类型的M-UMONs进行了理论研究。我们的计算结果表明,活度与金属-硫(M-S)键序之间呈火山状的相关性。随着M-S键序和相应的金属-氧(M-O)键序之间的差异增加,OER性能将下降,这意味着当键序差异最小时,预计将出现峰值活性。更重要的是,对M-UMONs系统OER性能描述子的成功探索意味着这种基于计算的描述子探索方法将为高性能OER催化剂的开发提供新的有希望的研究途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号