首页> 美国卫生研究院文献>iScience >Ants Use Multiple Spatial Memories and Chemical Pointers to Navigate Their Nest
【2h】

Ants Use Multiple Spatial Memories and Chemical Pointers to Navigate Their Nest

机译:蚂蚁使用多种空间记忆和化学指针来导航巢穴

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionNavigation is a major component in the adaptive and ecological success of any animal species. Different environments demand different navigational strategies as they vary in their resource distribution, the sensory cues they offer, and their topological structure. The vast majority of current knowledge concerns navigation above ground, which heavily relies on visual cues and often takes place in environments, either two- or three-dimensional, that allow for relatively unconstrained motion. Life, however, also inhabits subterranean environments. Navigation in these dark constrained conditions (, , ) is far less understood.Ants have attracted special attention in the study of navigation. Different ant species exhibit exceptional navigational skills despite an extremely small brain size (, ). This has allowed for an extensive study of ant navigational strategies, of the mechanisms that underlie ant navigation, and of its ecological costs and benefits (, , , , ). Similar to other species, ants depend on visual cues for navigation to a great extent (), even when walking along pheromone trails (, ) or during nocturnal activity (, ). Correspondingly, the vast majority of research on ant navigation concerns movement on the surface of the ground. This stands at odds with the fact that ants spend a considerable fraction of their lives within their nests (href="#bib24" rid="bib24" class=" bibr popnode">Heyman et al., 2017).The navigational capabilities that ants display above ground do not stop at the nest entrance: ants have preferred locations within the nest (href="#bib48" rid="bib48" class=" bibr popnode">Sendova-Franks and Franks, 1995, href="#bib39" rid="bib39" class=" bibr popnode">Mersch et al., 2013) to which they return repeatedly (href="#bib24" rid="bib24" class=" bibr popnode">Heyman et al., 2017). However, many of the navigation strategies that ants employ above the ground cannot be expected to carry over to intranidal navigation. Light does not penetrate underground. This renders the prevalent strategies of visual beaconing (href="#bib64" rid="bib64" class=" bibr popnode">Wehner et al., 1996, href="#bib20" rid="bib20" class=" bibr popnode">Graham et al., 2003, href="#bib34" rid="bib34" class=" bibr popnode">McLeman et al., 2002) and image matching (href="#bib30" rid="bib30" class=" bibr popnode">Lent et al., 2010) useless. Moreover, celestial bodies, often used as global positioning cues in various navigation mechanisms, are inaccessible. Here, we study the cues that are available underground and the ways in which ants integrate them into their navigational decisions.What sources of navigational information are accessible inside the ant nest? Gravitational signals may account for an ant colony's organization along the vertical axis (href="#bib56" rid="bib56" class=" bibr popnode">Tschinkel, 1999, href="#bib57" rid="bib57" class=" bibr popnode">Tschinkel, 2003, href="#bib55" rid="bib55" class=" bibr popnode">Tschinkel, 2005, href="#bib58" rid="bib58" class=" bibr popnode">Tschinkel and Hanley, 2017), whereas magnetic sensation (href="#bib1" rid="bib1" class=" bibr popnode">Anderson and Vander Meer, 1993) could play a similar role in the horizontal direction. Chemical-encoded information is another possible source of navigational cues within the nest. Above ground such cues come in the form of pheromone trails (href="#bib70" rid="bib70" class=" bibr popnode">Holldobler and Wilson, 1990, href="#bib12" rid="bib12" class=" bibr popnode">David Morgan, 2009, href="#bib11" rid="bib11" class=" bibr popnode">Czaczkes et al., 2015), hydrocarbon gradients (href="#bib52" rid="bib52" class=" bibr popnode">Sturgis et al., 2011), and volatile chemical gradients (href="#bib51" rid="bib51" class=" bibr popnode">Steck et al., 2011, href="#bib3" rid="bib3" class=" bibr popnode">Buehlmann et al., 2012). The role of CO2 soil gradients in colony organization was studied within natural nests (href="#bib59" rid="bib59" class=" bibr popnode">Tschinkel, 2013). Recently, it was shown that chemical navigational cues within the nest allow the ants to distinguish between different nest chambers (href="#bib24" rid="bib24" class=" bibr popnode">Heyman et al., 2017).Spatial memory may also be useful within the dark confines of the nest. An appealing mechanism in this respect is path integration, a prevalent navigational strategy that was studied mostly above ground but could potentially remain efficient under it (href="#bib27" rid="bib27" class=" bibr popnode">Kimchi et al., 2004) because ants were shown to perform path integration, which includes vertical components (href="#bib67" rid="bib67" class=" bibr popnode">Wohlgemuth et al., 2001). Another possible mechanism is motor learning, wherein movement sequences are memorized (href="#bib50" rid="bib50" class=" bibr popnode">Stamps, 1995, href="#bib49" rid="bib49" class=" bibr popnode">Srinivasan and Zhang, 2004). Ants were shown to apply motor learning while navigating in mazes with no visual landmarks (href="#bib33" rid="bib33" class=" bibr popnode">Macquart et al., 2008). Such self-referenced mechanisms reduce the dependence on external reference points, which may be unavailable within the nest (href="#bib6" rid="bib6" class=" bibr popnode">Collett and Collett, 2000, href="#bib62" rid="bib62" class=" bibr popnode">Wehner, 2003, href="#bib26" rid="bib26" class=" bibr popnode">Jeffery, 2003). However, independence from external references has its limitations: path integration must be accompanied by other navigational mechanisms to avoid runaway errors (href="#bib36" rid="bib36" class=" bibr popnode">Merkle et al., 2006, href="#bib38" rid="bib38" class=" bibr popnode">Merkle and Wehner, 2009, href="#bib41" rid="bib41" class=" bibr popnode">Müller and Wehner, 1988), whereas motor learning requires practicing the same route many times (href="#bib50" rid="bib50" class=" bibr popnode">Stamps, 1995).Ants combine private and social cues in a variety of contexts (href="#bib7" rid="bib7" class=" bibr popnode">Cronin, 2013, href="#bib46" rid="bib46" class=" bibr popnode">Robinson et al., 2009, href="#bib10" rid="bib10" class=" bibr popnode">Czaczkes et al., 2011). Social information, which is formed by the combined knowledge of many individuals, is often reliable and stable (href="#bib17" rid="bib17" class=" bibr popnode">Galton, 1907) yet slow to respond to environmental changes (href="#bib15" rid="bib15" class=" bibr popnode">Feldman et al., 1996). In contrast, private information, which is based on individual learning, has shorter update times but is error-prone (href="#bib36" rid="bib36" class=" bibr popnode">Merkle et al., 2006, href="#bib38" rid="bib38" class=" bibr popnode">Merkle and Wehner, 2009, href="#bib41" rid="bib41" class=" bibr popnode">Müller and Wehner, 1988). The latter source of information becomes crucial in situations of rapid environmental changes where social information is either missing or misleading (href="#bib23" rid="bib23" class=" bibr popnode">Harrison et al., 1989). These two information sources therefore complement one another to allow for organized and adaptive behaviors (href="#bib45" rid="bib45" class=" bibr popnode">Rieucau and Giraldeau, 2011, href="#bib53" rid="bib53" class=" bibr popnode">Templeton and Giraldeau, 1995).In this article, we use the brood-retrieval behavior of the species Camponotus fellah, to study how ants navigate their nest. We do this by tracking the trajectories of ants as they move from a misplaced brood pile outside the nest to a target chamber within the nest. We analyze which cues play important roles in the different parts of this trajectory. We find that, to navigate within the nest, the ants combine three independent sources of information. First are self-referenced cues where the ants memorize multiple target locations and orient toward them with no requirement for any visual or olfactory cues. Second are socially generated chemical cues that are placed at decision points located away from the destination and mark the route toward it. Third, we show that ant navigation is assisted by global gravitational cues. We go on to show how ants combine these different information sources and how individuals can adjust the weight attributed to conflicting cues in a way that allows them to adopt new routes while abandoning unrewarding ones. This fast individual learning process leads to global, stable improvement in the collective performance of the colony.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介导航是任何动物物种适应和生态成功的主要组成部分。不同的环境需要不同的导航策略,因为它们的资源分布,所提供的感觉线索以及拓扑结构都不同。当前的绝大多数知识都涉及地面上的导航,该导航很大程度上依赖于视觉提示,并且通常发生在二维或三维环境中,该环境允许相对不受限制的运动。然而,生活也居住在地下环境中。在这些黑暗的约束条件下(,,)进行导航的了解还很少。在导航研究中,蚂蚁引起了特别的关注。尽管大脑非常小,但不同的蚂蚁物种仍具有出色的导航技能(,)。这样就可以对蚂蚁导航策略,作为蚂蚁导航基础的机制及其生态成本和收益(,,,)进行广泛的研究。与其他物种相似,即使沿着信息素小径(,)或在夜间活动(,)行走时,蚂蚁在很大程度上也要依靠视觉提示进行导航。相应地,关于蚂蚁导航的绝大多数研究都涉及地面运动。这与蚂蚁在其巢穴中度过大部分生命的事实相矛盾(href="#bib24" rid="bib24" class=" bibr popnode"> Heyman等人,2017 )。蚂蚁在地面上方显示的导航功能不会在嵌套入口处停止:蚂蚁在嵌套中处于首选位置(href="#bib48" rid="bib48" class=" bibr popnode"> Sendova-Franks和Franks,1995 ,href="#bib39" rid="bib39" class=" bibr popnode"> Mersch et al。,2013 ),他们反复返回(href =“ #bib24“ rid =” bib24“ class =” bibr popnode“> Heyman等人,2017 )。但是,不能期望蚂蚁在地面上采用的许多导航策略都可以延续到巢内导航中。光不会穿透地下。这呈现了视觉信标化的流行策略(href="#bib64" rid="bib64" class=" bibr popnode"> Wehner et al。,1996 ,href =“#bib20” rid = “ bib20” class =“ bibr popnode”> Graham等人,2003 ,href="#bib34" rid="bib34" class=" bibr popnode"> McLeman等人,2002 )和图像匹配(href="#bib30" rid="bib30" class=" bibr popnode"> Lent等人,2010 )无效。而且,天体通常是各种导航机制中的全球定位提示,无法访问。在这里,我们研究了地下可用的线索以及蚂蚁将其整合到其导航决策中的方式。在蚁巢内部可访问哪些导航信息源?重力信号可能会沿垂直轴解释蚁群的组织(href="#bib56" rid="bib56" class=" bibr popnode"> Tschinkel,1999 ,href =“#bib57” rid =“ bib57” class =“ bibr popnode”> Tschinkel,2003 ,href="#bib55" rid="bib55" class=" bibr popnode"> Tschinkel,2005 ,href =“#bib58” rid =“ bib58” class =“ bibr popnode”> Tschinkel和Hanley,2017 ),而磁感应(href =“#bib1” rid =“ bib1” class =“ bibr popnode“> Anderson和Vander Meer,1993 )在水平方向上可能起类似的作用。化学编码信息是巢内导航提示的另一种可能来源。在地面上,此类线索以信息素线索的形式出现(href="#bib70" rid="bib70" class=" bibr popnode"> Holldobler and Wilson,1990 ,href =“#bib12” rid =“ bib12” class =“ bibr popnode”>大卫·摩根(David Morgan),2009 ,href="#bib11" rid="bib11" class=" bibr popnode"> Czaczkes等人,2015 ),碳氢化合物梯度(href="#bib52" rid="bib52" class=" bibr popnode"> Sturgis等人,2011 )和挥发性化学梯度(href =“#bib51 “ rid =” bib51“ class =” bibr popnode“> Steck等人,2011 ,href="#bib3" rid="bib3" class=" bibr popnode"> Buehlmann等人,2012 )。研究了自然巢中CO2土壤梯度在群落组织中的作用(href="#bib59" rid="bib59" class=" bibr popnode"> Tschinkel,2013 )。最近,研究表明,巢中的化学导航提示使蚂蚁能够区分不同的巢室(href="#bib24" rid="bib24" class=" bibr popnode"> Heyman等人,2017 Kimchi等等,2004 ),因为已显示蚂蚁可以执行路径整合,其中包括垂直组件(href="#bib67" rid="bib67" class=" bibr popnode"> Wohlgemuth等,2001 )。另一种可能的机制是运动学习,其中记忆运动序列(href="#bib50" rid="bib50" class=" bibr popnode">邮票,1995 ,href =“#bib49”摆脱=“ bib49” class =“ bibr popnode”> Srinivasan和Zhang,2004 )。蚂蚁被证明可以在没有视觉界标的迷宫中导航时进行运动学习(href="#bib33" rid="bib33" class=" bibr popnode"> Macquart et al。,2008 )。这种自引用机制减少了对外部参考点的依赖,而外部参考点可能在嵌套内部不可用(href="#bib6" rid="bib6" class=" bibr popnode"> Collett和Collett,2000 ,href="#bib62" rid="bib62" class=" bibr popnode">韦纳,2003 ,href="#bib26" rid="bib26" class=" bibr popnode"> Jeffery ,2003 )。但是,独立于外部引用有其局限性:路径集成必须伴随其他导航机制,以避免失控的错误(href="#bib36" rid="bib36" class=" bibr popnode"> Merkle et al。,2006 ,href="#bib38" rid="bib38" class=" bibr popnode">默克尔和韦纳,2009年,href =“#bib41” rid =“ bib41” class = “ bibr popnode”>Müller和Wehner,1988 ),而运动学习则需要多次练习相同的路线(href="#bib50" rid="bib50" class=" bibr popnode">邮票,1995年)。蚂蚁在各种情况下结合了私人和社交线索(href="#bib7" rid="bib7" class=" bibr popnode">克罗宁,2013年,href = “#bib46” rid =“ bib46” class =“ bibr popnode”>罗宾逊等人,2009 ,href="#bib10" rid="bib10" class=" bibr popnode"> Czaczkes等人。,2011 )。由许多人的综合知识形成的社会信息通常是可靠且稳定的(href="#bib17" rid="bib17" class=" bibr popnode">加尔顿,1907年)却很慢以应对环境变化(href="#bib15" rid="bib15" class=" bibr popnode"> Feldman等,1996 )。相比之下,基于个人学习的私人信息更新时间较短,但容易出错(href="#bib36" rid="bib36" class=" bibr popnode"> Merkle et al。,2006 < / a>,href="#bib38" rid="bib38" class=" bibr popnode">默克尔和韦纳,2009年,href =“#bib41” rid =“ bib41” class =“ bibr popnode“>Müller和Wehner,1988 )。在社会环境信息缺失或产生误导的环境快速变化的情况下,后一种信息来源变得至关重要(href="#bib23" rid="bib23" class=" bibr popnode"> Harrison et al。,1989 )。因此,这两个信息源互为补充,以实现有组织的适应性行为(href="#bib45" rid="bib45" class=" bibr popnode"> Rieucau和Giraldeau,2011 ,href = “#bib53” rid =“ bib53” class =“ bibr popnode”> Templeton和Giraldeau,1995 )。在本文中,我们使用了Camponotus fallah物种的寻巢行为,研究了蚂蚁如何引导它们巢。我们通过跟踪蚂蚁从巢外错放的育雏堆移动到巢内目标小室的轨迹来做到这一点。我们分析了哪些线索在该轨迹的不同部分中起重要作用。我们发现,为了在巢中导航,蚂蚁结合了三个独立的信息源。首先是自我参照的提示,其中蚂蚁记住多个目标位置并定向到它们,而无需任何视觉或嗅觉提示。其次是社会生成的化学线索,放置在远离目的地的决策点上,并标记通往目的地的路线。第三,我们证明了蚂蚁导航是由全球引力线索辅助的。我们继续展示蚂蚁如何结合这些不同的信息源,以及个人如何调整因相互矛盾的线索而产生的权重,从而使他们能够采用新的路线,而放弃无用的路线。这种快速的个人学习过程导致了殖民地集体绩效的全面,稳定的改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号