首页> 美国卫生研究院文献>Journal of Bacteriology >Sequence Analysis of the GntII (Subsidiary) System for Gluconate Metabolism Reveals a Novel Pathway for l-Idonic Acid Catabolism in Escherichia coli
【2h】

Sequence Analysis of the GntII (Subsidiary) System for Gluconate Metabolism Reveals a Novel Pathway for l-Idonic Acid Catabolism in Escherichia coli

机译:GntII(子公司)系统的葡萄糖酸盐代谢的序列分析揭示了大肠杆菌中L-亚当酸代谢的新途径

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The presence of two systems in Escherichia coli for gluconate transport and phosphorylation is puzzling. The main system, GntI, is well characterized, while the subsidiary system, GntII, is poorly understood. Genomic sequence analysis of the region known to contain genes of the GntII system led to a hypothesis which was tested biochemically and confirmed: the GntII system encodes a pathway for catabolism of l-idonic acid in which d-gluconate is an intermediate. The genes have been named accordingly: the idnK gene, encoding a thermosensitive gluconate kinase, is monocistronic and transcribed divergently from the idnD-idnO-idnT-idnR operon, which encodes l-idonate 5-dehydrogenase, 5-keto-d-gluconate 5-reductase, an l-idonate transporter, and an l-idonate regulatory protein, respectively. The metabolic sequence is as follows: IdnT allows uptake of l-idonate; IdnD catalyzes a reversible oxidation of l-idonate to form 5-ketogluconate; IdnO catalyzes a reversible reduction of 5-ketogluconate to form d-gluconate; IdnK catalyzes an ATP-dependent phosphorylation of d-gluconate to form 6-phosphogluconate, which is metabolized further via the Entner-Doudoroff pathway; and IdnR appears to act as a positive regulator of the IdnR regulon, with l-idonate or 5-ketogluconate serving as the true inducer of the pathway. The l-idonate 5-dehydrogenase and 5-keto-d-gluconate 5-reductase reactions were characterized both chemically and biochemically by using crude cell extracts, and it was firmly established that these two enzymes allow for the redox-coupled interconversion of l-idonate and d-gluconate via the intermediate 5-ketogluconate. E. coli K-12 strains are able to utilize l-idonate as the sole carbon and energy source, and as predicted, the ability of idnD, idnK, idnR, and edd mutants to grow on class="small-caps">l-idonate is altered.
机译:大肠杆菌中存在两个用于葡萄糖酸盐转运和磷酸化的系统,令人费解。主要系统GntI具有良好的特性,而辅助系统GntII则知之甚少。对已知含有GntII系统基因的区域进行基因组序列分析,得出了一个假设,该假设经过了生化检验并得到证实:GntII系统编码了一个以l-艾丹酸为代谢途径的途径,其中d-葡萄糖酸盐是一种中间体。相应地命名了这些基因:编码热敏葡萄糖酸激酶的idnK基因是单顺反子,并从idnD-idnO-idnT-idnR操纵子发散地转录,该操纵子编码l-idonate 5-dehydrogenase,5-keto-d-gluconate 5 -还原酶,L-idonate转运蛋白和L-idonate调节蛋白。代谢顺序如下:IdnT允许摄取I- idonate; IdnD催化L-异氰酸酯的可逆氧化,形成5-酮基葡萄糖酸酯。 IdnO催化5-酮基葡萄糖酸酯的可逆还原反应,生成d-葡萄糖酸酯。 IdnK催化d-葡萄糖酸酯的ATP依赖性磷酸化反应,形成6-磷酸葡萄糖酸酯,后者通过Entner-Doudoroff途径进一步代谢。 IdnR似乎是IdnR regulon的正调节剂,而L-葡萄糖酸酯或5-酮基葡萄糖酸酯是该途径的真正诱导剂。通过使用粗细胞提取物在化学和生物化学上对l- idonate 5-dehydrogenase和5-keto-d-gluconate 5-reductase反应进行了表征,并牢固地确定了这两种酶可以实现l-的氧化还原偶联互变。中间体5-酮葡糖酸酯中的氨基酸酯和d-葡糖酸酯。大肠杆菌K-12菌株能够利用l-idonate作为唯一的碳源和能源,并且正如预测的那样,idnD,idnK,idnR和edd突变体能够在 class =“ small-caps”上生长> l -idonate改变了。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号