首页> 美国卫生研究院文献>Oncogenesis >DeepCC: a novel deep learning-based framework for cancer molecular subtype classification
【2h】

DeepCC: a novel deep learning-based framework for cancer molecular subtype classification

机译:DeepCC:基于新型的基于深度学习的癌症分子亚型分类框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Molecular subtyping of cancer is a critical step towards more individualized therapy and provides important biological insights into cancer heterogeneity. Although gene expression signature-based classification has been widely demonstrated to be an effective approach in the last decade, the widespread implementation has long been limited by platform differences, batch effects, and the difficulty to classify individual patient samples. Here, we describe a novel supervised cancer classification framework, deep cancer subtype classification (DeepCC), based on deep learning of functional spectra quantifying activities of biological pathways. In two case studies about colorectal and breast cancer classification, DeepCC classifiers and DeepCC single sample predictors both achieved overall higher sensitivity, specificity, and accuracy compared with other widely used classification methods such as random forests (RF), support vector machine (SVM), gradient boosting machine (GBM), and multinomial logistic regression algorithms. Simulation analysis based on random subsampling of genes demonstrated the robustness of DeepCC to missing data. Moreover, deep features learned by DeepCC captured biological characteristics associated with distinct molecular subtypes, enabling more compact within-subtype distribution and between-subtype separation of patient samples, and therefore greatly reduce the number of unclassifiable samples previously. In summary, DeepCC provides a novel cancer classification framework that is platform independent, robust to missing data, and can be used for single sample prediction facilitating clinical implementation of cancer molecular subtyping.
机译:癌症的分子亚型化是朝着更加个体化的治疗迈出的关键一步,并为癌症异质性提供了重要的生物学见解。尽管在过去的十年中,基于基因表达签名的分类已被广泛证明是一种有效的方法,但长期以来,由于平台差异,批次效应以及难以对单个患者样品进行分类的限制,广泛的实施受到了限制。在这里,我们基于对生物途径活动的功能谱进行深度学习,描述了一种新型的监督癌症分类框架,即深癌亚型分类(DeepCC)。在关于结肠直肠癌和乳腺癌分类的两个案例研究中,与其他广泛使用的分类方法(例如,随机森林(RF),支持向量机(SVM))相比,DeepCC分类器和DeepCC单一样本预测值总体上具有更高的敏感性,特异性和准确性。梯度提升机(GBM)和多项逻辑回归算法。基于基因随机抽样的仿真分析证明了DeepCC对丢失数据的鲁棒性。而且,DeepCC学习到的深层特征捕获了与不同分子亚型相关的生物学特征,从而使患者样品的亚型内分布和亚型间分离更加紧凑,因此大大减少了以前无法分类的样品数量。总之,DeepCC提供了一种新颖的癌症分类框架,该框架独立于平台,对丢失的数据具有鲁棒性,可用于单个样本预测,从而促进癌症分子亚型的临床实施。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号