首页> 美国卫生研究院文献>Journal of Cheminformatics >Avoiding hERG-liability in drug design via synergetic combinations of different (Q)SAR methodologies and data sources: a case study in an industrial setting
【2h】

Avoiding hERG-liability in drug design via synergetic combinations of different (Q)SAR methodologies and data sources: a case study in an industrial setting

机译:通过不同(Q)SAR方法和数据源的协同组合避免药物设计中的hERG责任:在工业环境中的案例研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we explore the impact of combining different in silico prediction approaches and data sources on the predictive performance of the resulting system. We use inhibition of the hERG ion channel target as the endpoint for this study as it constitutes a key safety concern in drug development and a potential cause of attrition. We will show that combining data sources can improve the relevance of the training set in regard of the target chemical space, leading to improved performance. Similarly we will demonstrate that combining multiple statistical models together, and with expert systems, can lead to positive synergistic effects when taking into account the confidence in the predictions of the merged systems. The best combinations analyzed display a good hERG predictivity. Finally, this work demonstrates the suitability of the SOHN methodology for building models in the context of receptor based endpoints like hERG inhibition when using the appropriate pharmacophoric descriptors.Electronic supplementary materialThe online version of this article (10.1186/s13321-019-0334-y) contains supplementary material, which is available to authorized users.
机译:在本文中,我们探讨了将不同的计算机预测方法和数据源相结合对最终系统的预测性能的影响。我们将hERG离子通道靶标的抑制作用用作该研究的终点,因为它构成药物开发中的关键安全问题和潜在的磨损原因。我们将显示,组合数据源可以提高目标化学空间方面训练集的相关性,从而提高性能。同样,我们将证明,考虑到对合并系统的预测充满信心,将多个统计模型结合在一起,并与专家系统结合使用,可以产生积极的协同效应。分析的最佳组合显示出良好的hERG预测性。最后,这项工作证明了SOHN方法在基于受体的终点(例如使用适当的药效团描述词)抑制hERG抑制的背景下建立模型的适用性。电子补充材料本文的在线版本(10.1186 / s13321-019-0334-y)包含补充材料,授权用户可以使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号