首页> 美国卫生研究院文献>Genes Diseases >uCARE Chem Suite and uCAREChemSuiteCLI: Tools for bacterial resistome prediction
【2h】

uCARE Chem Suite and uCAREChemSuiteCLI: Tools for bacterial resistome prediction

机译:UCARE Chem Suite和Ucarechemsuitecli:用于细菌电阻预测的工具

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the era of antibiotic resistance, in silico prediction of bacterial resistome profiles, likely to be associated with inactivation of new potential antibiotics is of utmost importance. Despite this, to the best of our knowledge, no tool exists for such prediction. Therefore, under the rationale that drugs with similar structures have similar resistome profiles, we developed two models, a deterministic model and a stochastic model, to predict the bacterial resistome likely to neutralize uncharacterized but potential chemical structures. The current version of the tool involves the prediction of a resistome for Escherichia coli and Pseudomonas aeruginosa. The deterministic model on omitting two diverse but relatively less characterized drug classes, polyketides and polypeptides showed an accuracy of 87%, a sensitivity of 85%, and a precision of 89%, whereas the stochastic model predicted antibiotic classes of the test set compounds with an accuracy of 72%, a sensitivity of 75%, and a precision of 83%. The models have been implemented in both a standalone package and an online server, uCAREChemSuiteCLI and uCARE Chem Suite, respectively. In addition to resistome prediction, the online version of the suite enables the user to visualize the chemical structure, classify compounds in 19 predefined drug classes, perform pairwise alignment, and cluster with database compounds using a graphical user interface.
机译:在抗生素抗性的时代,在细菌电阻谱的硅预测中,可能与新的潜在抗生素的失活相关,这是至关重要的。尽管如此,据我们所知,这种预测没有工具。因此,在具有类似结构的药物具有类似的电阻谱的基本原理下,我们开发了两种模型,确定性模型和随机模型,以预测可能对不具心化但潜在的化学结构中和的细菌电阻。该工具的当前版本涉及对大肠杆菌和假单胞菌铜绿假单胞菌的电阻预测。省略两种多种但相对较少的药物类别,聚酮和多肽的确定性模型显示出87%,灵敏度为85%,精度为89%,而随机模型预测试验组化合物的抗生素类别精度为72%,灵敏度为75%,精度为83%。该模型分别在独立包和在线服务器,Ucarechemsuitecli和Ucare Chem套件中实现。除了电阻预测外,套件的在线版本使用户能够可视化化学结构,将化合物分类为19个预定义的药物类,使用图形用户界面与数据库化合物进行成对对齐。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号