首页> 美国卫生研究院文献>Genes Diseases >Microbiome data analysis with applications to pre-clinical studies using QIIME2: Statistical considerations
【2h】

Microbiome data analysis with applications to pre-clinical studies using QIIME2: Statistical considerations

机译:使用Qiime2的微生物组数据分析与应用到临床前研究:统计考虑

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Diversity analysis and taxonomic profiles can be generated from marker-gene sequence data with the help of many available computational tools. The Quantitative Insights into Microbial Ecology Version 2 (QIIME2) has been widely used for 16S rRNA data analysis. While many articles have demonstrated the use of QIIME2 with suitable datasets, the application to pre-clinical data has rarely been talked about. The issues involved in the pre-clinical data include the low-quality score and small sample size that should be addressed properly during analysis. In addition, there are few articles that discuss the detailed statistical methods behind those alpha and beta diversity significance tests that researchers are eager to find. Running the program without knowing the logic behind it is extremely risky. In this article, we first provide a guideline for analyzing 16S rRNA data using QIIME2. Then we will talk about issues in pre-clinical data, and how they could impact the outcome. Finally, we provide brief explanations of statistical methods such as group significance tests and sample size calculation.
机译:在许多可用的计算工具的帮助下,可以从标记-基因序列数据生成分集分析和分类分析。对微生物生态学版2(QIIME2)的定量见解已被广泛用于16S RRNA数据分析。虽然许多文章已经证明使用Qiime2与合适的数据集,但很少谈到临床前数据的应用。临床前数据所涉及的问题包括在分析期间应正确解决的低质量分数和小样本大小。此外,还有很少的文章讨论了研究人员渴望找到的α和β多样性意义测试背后的详细统计方法。运行该程序而不知道其背后的逻辑是非常危险的。在本文中,我们首先提供了一种使用Qiime2分析16S RRNA数据的指导。然后我们将讨论临床前数据中的问题,以及它们如何影响结果。最后,我们提供了对统计方法的简要解释,例如群体意义测试和样本量计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号