首页> 美国卫生研究院文献>Entropy >Image Hashtag Recommendations Using a Voting Deep Neural Network and Associative Rules Mining Approach
【2h】

Image Hashtag Recommendations Using a Voting Deep Neural Network and Associative Rules Mining Approach

机译:使用投票深层神经网络和联想规则采矿方法的图像具有图像主题建议

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hashtag-based image descriptions are a popular approach for labeling images on social media platforms. In practice, images are often described by more than one hashtag. Due the rapid development of deep neural networks specialized in image embedding and classification, it is now possible to generate those descriptions automatically. In this paper we propose a novel Voting Deep Neural Network with Associative Rules Mining (VDNN-ARM) algorithm that can be used to solve multi-label hashtag recommendation problems. VDNN-ARM is a machine learning approach that utilizes an ensemble of deep neural networks to generate image features, which are then classified to potential hashtag sets. Proposed hashtags are then filtered by a voting schema. The remaining hashtags might be included in a final recommended hashtags dataset by application of associative rules mining, which explores dependencies in certain hashtag groups. Our approach is evaluated on a HARRISON benchmark dataset as a multi-label classification problem. The highest values of our evaluation parameters, including precision, recall, and accuracy, have been obtained for VDNN-ARM with a confidence threshold 0.95. VDNN-ARM outperforms state-of-the-art algorithms, including VGG-Object + VGG-Scene precision by 17.91% as well as ensemble–FFNN (intersection) recall by 32.33% and accuracy by 27.00%. Both the dataset and all source codes we implemented for this research are available for download, and our results can be reproduced.
机译:基于HASHTAG的图像描述是一种流行的在社交媒体平台上标记图像的流行方法。在实践中,通常由多个HASHTAG描述图像。由于专门从事图像嵌入和分类的深神经网络的快速发展,现在可以自动生成这些描述。在本文中,我们提出了一种新型投票深神经网络,具有联想规则挖掘(VDNN-ARM)算法,可用于解决多标签具有备用推荐问题。 VDNN-ARM是一种机器学习方法,它利用深神经网络的集合来生成图像特征,然后将其分类为潜在的HASHTAG集合。然后通过投票模式过滤提出的HASHTAG。剩余的HASHTAG可能包含在最终推荐的HASHTAGS数据集中,通过应用关联规则挖掘,该数据集挖掘某些HASHTAG组中的依赖项。我们的方法是在Harrison基准数据集中评估作为多标签分类问题。我们的评估参数的最高值,包括精度,召回和精度,用于置信阈值0.95的VDNN-ARM。 VDNN-ARM优于最先进的算法,包括vgg-object + vgg-sceet精度,达到17.91%以及集合FFNN(交叉点)召回32.33%,准确度为27.00%。 DataSet和我们为该研究实现的所有源代码都可用于下载,我们的结果可以再现。

著录项

  • 期刊名称 Entropy
  • 作者

    Tomasz Hachaj; Justyna Miazga;

  • 作者单位
  • 年(卷),期 2020(22),12
  • 年度 2020
  • 页码 1351
  • 总页数 13
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

    机译:Hashtag建议;深神经网络;转移学习;联合规则挖掘;

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号