首页> 美国卫生研究院文献>Educational and Psychological Measurement >Using Fit Statistic Differences to Determine the Optimal Number of Factors to Retain in an Exploratory Factor Analysis
【2h】

Using Fit Statistic Differences to Determine the Optimal Number of Factors to Retain in an Exploratory Factor Analysis

机译:使用拟合统计差异来确定保留探索性因子分析的最佳因素数量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Exploratory factor analysis (EFA) is widely used by researchers in the social sciences to characterize the latent structure underlying a set of observed indicator variables. One of the primary issues that must be resolved when conducting an EFA is determination of the number of factors to retain. There exist a large number of statistical tools designed to address this question, with none being universally optimal across applications. Recently, researchers have investigated the use of model fit indices that are commonly used in the conduct of confirmatory factor analysis to determine the number of factors to retain in EFA. These results have yielded mixed results, appearing to be effective when used in conjunction with normally distributed indicators, but not being as effective for categorical indicators. The purpose of this simulation study was to compare the performance of difference values for several fit indices as a method for identifying the optimal number of factors to retain in an EFA, with parallel analysis, which is one of the most reliable such extant methods. Results of the simulation demonstrated that the use of fit index difference values outperformed parallel analysis for categorical indicators, and for normally distributed indicators when factor loadings were small. Implications of these findings are discussed.
机译:探索性因子分析(EFA)被社会科学研究人员广泛应用于潜在的一组观察指示变量的潜在结构。进行EFA时必须解决的主要问题之一是确定保留的因素数量。存在大量统计工具旨在解决这个问题,没有跨应用程序普遍最佳。最近,研究人员已经调查了使用模型拟合指数,这些指数通常用于进行确认因子分析,以确定留在EFA中保留的因素的数量。这些结果产生了混合的结果,当与正常分布的指标结合使用时出现有效,但对分类指标无效。该模拟研究的目的是将几种拟合指数的差值的性能进行比较,作为识别在EFA中保留在EFA中的最佳因素的方法,并行分析,这是最可靠的这种现存方法之一。模拟结果表明,使用配合指标差值的使用优于分类指示器的平行分析,并且当因子装载小时,对于正常分布的指标。讨论了这些发现的含义。

著录项

  • 期刊名称 Educational and Psychological Measurement
  • 作者

    W. Holmes Finch;

  • 作者单位
  • 年(卷),期 2019(80),2
  • 年度 2019
  • 页码 217–241
  • 总页数 25
  • 原文格式 PDF
  • 正文语种
  • 中图分类 病理学;
  • 关键词

    机译:探索性因子分析;模型拟合统计;近似的根均方误差;RMSEA;并行分析;比较拟合指数;CFI;

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号