首页> 美国卫生研究院文献>Biophysical Journal >Particle-Based Simulation Reveals Macromolecular Crowding Effects on the Michaelis-Menten Mechanism
【2h】

Particle-Based Simulation Reveals Macromolecular Crowding Effects on the Michaelis-Menten Mechanism

机译:基于颗粒的仿真显示了Michaelis-Menten机制上的大分子挤压效应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many computational models for analyzing and predicting cell physiology rely on in vitro data collected in dilute and controlled buffer solutions. However, this can mislead models because up to 40% of the intracellular volume—depending on the organism, the physiology, and the cellular compartment—is occupied by a dense mixture of proteins, lipids, polysaccharides, RNA, and DNA. These intracellular macromolecules interfere with the interactions of enzymes and their reactants and thus affect the kinetics of biochemical reactions, making in vivo reactions considerably more complex than the in vitro data indicates. In this work, we present a new, to our knowledge, type of kinetics that captures and quantifies the effect of volume exclusion and other spatial phenomena on the kinetics of elementary reactions. We further developed a framework that allows for the efficient parameterization of these kinetics using particle simulations. Our formulation, entitled generalized elementary kinetics, can be used to analyze and predict the effect of intracellular crowding on enzymatic reactions and was herein applied to investigate the influence of crowding on phosphoglycerate mutase in Escherichia coli, which exhibits prototypical reversible Michaelis-Menten kinetics. Current research indicates that many enzymes are reaction limited and not diffusion limited, and our results suggest that the influence of fractal diffusion is minimal for these reaction-limited enzymes. Instead, increased association rates and decreased dissociation rates lead to a strong decrease in the effective maximal velocities Vmax and the effective Michaelis-Menten constants KM under physiologically relevant volume occupancies. Finally, the effects of crowding were explored in the context of a linear pathway, with the finding that crowding can have a redistributing effect on the effective flux responses in the case of twofold enzyme overexpression. We suggest that this framework, in combination with detailed kinetics models, will improve our understanding of enzyme reaction networks under nonideal conditions.
机译:用于分析和预测细胞生理学的许多计算模型依赖于在稀释和受控缓冲溶液中收集的体外数据。然而,这可以误导模型,因为细胞内体积的高达40%取决于生物体,生理学和细胞室 - 被蛋白质,脂质,多糖,RNA和DNA的致密混合物占据。这些细胞内大分子干扰了酶及其反应物的相互作用,从而影响生化反应的动力学,在体内反应中制造比体外数据更复杂。在这项工作中,我们提出了一种新的,了解我们的知识,捕获和量​​化的动力学类型,这些动力学捕获和量化的储存和其他空间现象对基本反应动力学的影响。我们进一步开发了一个框架,它允许使用粒子仿真实现这些动力学的有效参数化。我们的配方,题为普遍的基本动力学,可用于分析和预测细胞内拥挤对酶促反应的影响,并在本文中应用,以研究拥挤对大肠杆菌中磷酸性蛋白酶的影响,这呈现出原型可逆迈克利斯动力学。目前的研究表明,许多酶是反应有限的,而不是扩散有限的,我们的结果表明,这些反应限制的分形扩散的影响最小。相反,增加的协会率和降低的解离率导致有效的最大速度Vmax和生理相关的体积占用的有效迈克利斯 - 麦龄常数厘米的强烈降低。最后,在线性途径的背景下探讨了拥挤的效果,发现在双重酶过表达的情况下,挤拥挤可以对有效的助熔剂反应产生重新分配影响。我们建议该框架与详细的动力学模型相结合,将改善我们在非侵害条件下对酶反应网络的理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号