首页> 美国卫生研究院文献>The Journal of Biological Chemistry >Energetic Mechanism of Cytochrome c-Cytochrome c Oxidase Electron Transfer Complex Formation under Turnover Conditions Revealed by Mutational Effects and Docking Simulation
【2h】

Energetic Mechanism of Cytochrome c-Cytochrome c Oxidase Electron Transfer Complex Formation under Turnover Conditions Revealed by Mutational Effects and Docking Simulation

机译:突变效应和对接模拟揭示了翻转条件下细胞色素c-细胞色素c氧化酶电子转移复合物形成的能量机理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Based on the mutational effects on the steady-state kinetics of the electron transfer reaction and our NMR analysis of the interaction site (Sakamoto, K., Kamiya, M., Imai, M., Shinzawa-Itoh, K., Uchida, T., Kawano, K., Yoshikawa, S., and Ishimori, K. (2011) Proc. Natl. Acad. Sci. U.S.A. 108, 12271–12276), we determined the structure of the electron transfer complex between cytochrome c (Cyt c) and cytochrome c oxidase (CcO) under turnover conditions and energetically characterized the interactions essential for complex formation. The complex structures predicted by the protein docking simulation were computationally selected and validated by the experimental kinetic data for mutant Cyt c in the electron transfer reaction to CcO. The interaction analysis using the selected Cyt c-CcO complex structure revealed the electrostatic and hydrophobic contributions of each amino acid residue to the free energy required for complex formation. Several charged residues showed large unfavorable (desolvation) electrostatic interactions that were almost cancelled out by large favorable (Columbic) electrostatic interactions but resulted in the destabilization of the complex. The residual destabilizing free energy is compensated by the van der Waals interactions mediated by hydrophobic amino acid residues to give the stabilized complex. Thus, hydrophobic interactions are the primary factors that promote complex formation between Cyt c and CcO under turnover conditions, whereas the change in the electrostatic destabilization free energy provides the variance of the binding free energy in the mutants. The distribution of favorable and unfavorable electrostatic interactions in the interaction site determines the orientation of the binding of Cyt c on CcO.
机译:基于电子转移反应稳态动力学的突变效应和相互作用位点的NMR分析(坂本,K。,神谷,男,今井,M,新泽伊藤,K。,内田,T例如,Kawano,K.,Yoshikawa,S.和Ishimori,K.(2011)Proc。Natl.Acad.Sci.USA 108,12271–12276),我们确定了细胞色素c(Cyt c)和细胞色素c氧化酶(CcO)在周转条件下进行,并从能量上表征了复合物形成必不可少的相互作用。通过蛋白质对接模拟预测的复杂结构是通过计算选择的,并通过突变体Cyt c在电子转移至CcO中的实验动力学数据进行了验证。使用选定的Cyt c-CcO络合物结构进行的相互作用分析显示,每个氨基酸残基对络合物形成所需的自由能的静电和疏水作用。几个带电残基显示出较大的不利(去溶剂化)静电相互作用,几乎被较大的有利(哥伦比亚)静电相互作用抵消,但导致复合物不稳定。残留的不稳定稳定自由能通过疏水性氨基酸残基介导的范德华相互作用来补偿,从而得到稳定的复合物。因此,疏水性相互作用是在周转条件下促进Cyt c和CcO之间形成复合物的主要因素,而静电去稳定自由能的变化提供了突变体中结合自由能的变化。相互作用部位中有利和不利的静电相互作用的分布决定了Cyt c在CcO上的结合方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号