首页> 外文学位 >Ruthenium flash initiated studies of electron transfer between cytochrome c and the b hemes of cytochrome b5 and sulfite oxidase, and electron transfer within cytochrome bc1.
【24h】

Ruthenium flash initiated studies of electron transfer between cytochrome c and the b hemes of cytochrome b5 and sulfite oxidase, and electron transfer within cytochrome bc1.

机译:钌闪灯开始研究细胞色素c与细胞色素b5和亚硫酸盐氧化酶的血红素之间的电子转移,以及细胞色素bc1内的电子转移。

获取原文
获取原文并翻译 | 示例

摘要

Electron transfer within and between biological protein complexes comprises the predominant means of cellular energy production via the coupling of electronic events to the establishment of an electrochemical membrane gradient used to drive the synthesis of high energetic compounds such as ATP. Research undertaken and described herein pursues an elucidation of the specifics of redox events in three separate protein systems, as well as a more general understanding of the nature biological electron transfer, for which the current experiments are relevant and augment. Specifically, the kinetics of electron transfer between cytochromes c and b5, cytochrome c and sulfite oxidase, and cytochromes c and bc 1 (complex III) were studied using a method of rapid flash oxidation of an attached ruthenium reagent to cytochrome c. In addition, redox events within cytochrome bc1 were studied using the binuclear ruthenium reagent, Ru2D, as a cytochrome c surrogate to rapidly initiate oxidant-induced-turnover of the enzyme. Evidence provided below reveals the rate of intracomplex electron transfer between cytochrome c and the b hemes of sulfite oxidase and cytochrome b5 in the physiological direction and redox state for the first time. For the redox events within cytochrome bc1, the effects of several different experimental conditions---including temperature, viscosity, inhibitors, substrates and mutants---are provided and suggest a level of allosteric communication between distal quinone active sites and electronic equilibration across the dimeric interface.
机译:生物蛋白复合物中和生物蛋白复合物之间的电子转移主要是通过电子事件与建立电化学膜梯度的耦合来产生细胞能量的主要手段,该电化学膜梯度用于驱动高能化合物(如ATP)的合成。本文进行和描述的研究旨在阐明三种独立蛋白质系统中氧化还原事件的特异性,以及对自然生物电子转移的更一般性理解,当前的实验对此具有重要意义。具体而言,使用快速钌氧化方法将钌试剂附着到细胞色素c上,研究了细胞色素c和b5,细胞色素c和亚硫酸盐氧化酶以及细胞色素c和bc 1(复合物III)之间电子转移的动力学。此外,还使用双核钌试剂Ru2D作为细胞色素c替代物来研究细胞色素bc1中的氧化还原事件,以快速启动该酶的氧化剂诱导的转换。以下提供的证据首次揭示了细胞色素c与亚硫酸盐氧化酶和细胞色素b5的b血红素在生理方向和氧化还原状态之间的内部复合电子转移的速率。对于细胞色素bc1内的氧化还原事件,提供了几种不同的实验条件-包括温度,粘度,抑制剂,底物和突变体-的影响,并暗示了远端醌活性位点与整个电子平衡之间的变构通讯水平。二聚体界面。

著录项

  • 作者

    Havens, Jeffrey A.;

  • 作者单位

    University of Arkansas.;

  • 授予单位 University of Arkansas.;
  • 学科 Chemistry Molecular.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 330 p.
  • 总页数 330
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号