首页> 美国卫生研究院文献>Biophysical Journal >Spatiotemporal Dynamics of Dilute Red Blood Cell Suspensions in Low-Inertia Microchannel Flow
【2h】

Spatiotemporal Dynamics of Dilute Red Blood Cell Suspensions in Low-Inertia Microchannel Flow

机译:低惯性微通道流动稀释红细胞悬浮液的时空动态

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Microfluidic technologies are commonly used for the manipulation of red blood cell (RBC) suspensions and analyses of flow-mediated biomechanics. To enhance the performance of microfluidic devices, understanding the dynamics of the suspensions processed within is crucial. We report novel, to our knowledge, aspects of the spatiotemporal dynamics of RBC suspensions flowing through a typical microchannel at low Reynolds number. Through experiments with dilute RBC suspensions, we find an off-center two-peak (OCTP) profile of cells contrary to the centralized distribution commonly reported for low-inertia flows. This is reminiscent of the well-known “tubular pinch effect,” which arises from inertial effects. However, given the conditions of negligible inertia in our experiments, an alternative explanation is needed for this OCTP profile. Our massively parallel simulations of RBC flow in real-size microfluidic dimensions using the immersed-boundary-lattice-Boltzmann method confirm the experimental findings and elucidate the underlying mechanism for the counterintuitive RBC pattern. By analyzing the RBC migration and cell-free layer development within a high-aspect-ratio channel, we show that such a distribution is co-determined by the spatial decay of hydrodynamic lift and the global deficiency of cell dispersion in dilute suspensions. We find a cell-free layer development length greater than 46 and 28 hydraulic diameters in the experiment and simulation, respectively, exceeding typical lengths of microfluidic designs. Our work highlights the key role of transient cell distribution in dilute suspensions, which may negatively affect the reliability of experimental results if not taken into account.
机译:微流体技术通常用于操纵红细胞(RBC)悬浮液和流动介导的生物力学分析。为了增强微流体装置的性能,了解在内部处理的悬浮液的动态至关重要。我们向我们的知识报告新颖的RBC悬浮液的时尚动态的各方面,所述RBC悬浮液流过低雷诺数的典型微通道。通过稀释RBC悬浮液的实验,我们发现与常用于低惯性流动的集中式分布相反的电池的偏心双峰(OCTP)轮廓。这使得来自奇异效应的众所周知的“管状夹效”。然而,鉴于我们实验中缺乏可忽略的惯性条件,该OCTP配置文件需要替代说明。我们使用浸没边界晶格 - 玻璃法的实际微流体尺寸中大规模平行模拟RBC流量,使用浸入式 - 晶格-Boltzmann方法确认了实验结果,并阐明了逆行RBC模式的潜在机制。通过在高纵横比通道内分析RBC迁移和无细胞层显影,我们表明这种分布通过流体动力升力的空间衰减以及稀释悬浮液中的细胞分散体的全局缺陷共确定。在实验和模拟中,我们发现无细胞层开发长度大于46和28个液压直径,超过典型的微流体设计。我们的工作突出了瞬态细胞分布在稀释悬浮液中的关键作用,这可能会对实验结果的可靠性产生负面影响,如果没有考虑。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号