首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >RF-Based Moisture Content Determination in Rice Using Machine Learning Techniques
【2h】

RF-Based Moisture Content Determination in Rice Using Machine Learning Techniques

机译:采用机器学习技术基于RF的水分含量测定

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Seasonal crops require reliable storage conditions to protect the yield once harvested. For long term storage, controlling the moisture content level in grains is challenging because existing moisture measuring techniques are time-consuming and laborious as measurements are carried out manually. The measurements are carried out using a sample and moisture may be unevenly distributed inside the silo/bin. Numerous studies have been conducted to measure the moisture content in grains utilising dielectric properties. To the best of authors’ knowledge, the utilisation of low-cost wireless technology operating in the 2.4 GHz and 915 MHz ISM bands such as Wireless Sensor Network (WSN) and Radio Frequency Identification (RFID) have not been widely investigated. This study focuses on the characterisation of 2.4 GHz Radio Frequency (RF) transceivers using ZigBee Standard and 868 to 915 MHz UHF RFID transceiver for moisture content classification and prediction using Artificial Neural Network (ANN) models. The Received Signal Strength Indicator (RSSI) from the wireless transceivers is used for moisture content prediction in rice. Four samples (2 kg of rice each) were conditioned to 10%, 15%, 20%, and 25% moisture contents. The RSSI from both systems were obtained and processed. The processed data is used as input to different ANNs models such as Support Vector Machine (SVM), K-Nearest Neighbour (KNN), Random Forest, and Multi-layer Perceptron (MLP). The results show that the Random Forest method with one input feature (RSSI_WSN) provides the highest accuracy of 87% compared to the other four models. All models show more than 98% accuracy when two input features (RSSI_WSN and RSSI_TAG2) are used. Hence, Random Forest is a reliable model that can be used to predict the moisture content level in rice as it gives a high accuracy even when only one input feature is used.
机译:季节性作物需要可靠的储存条件来保护产量一旦收获。对于长期储存,控制晶粒中的水分含量水平是具有挑战性的,因为现有的水分测量技术是耗时的,并且手动进行测量。测量使用样品进行,并且水分可能不均匀地分布在筒仓/箱内。已经进行了许多研究以测量利用介电性质的粒度的水分含量。据作者所知,在2.4GHz和915 MHz ISM频段中运行的低成本无线技术的利用尚未得到广泛研究无线传感器网络(WSN)和射频识别(RFID)。本研究专注于使用ZigBee标准和868至915 MHz UHF RFID收发器的2.4GHz射频(RF)收发器的表征,用于使用人工神经网络(ANN)模型进行含水量分类和预测。来自无线收发器的接收信号强度指示器(RSSI)用于水稻中的水分含量预测。将四个样品(2千克水稻)调节至10%,15%,20%和25%的水分含量。从两个系统中获取并加工了RSSI。处理后的数据用作不同的ANNS模型的输入,例如支持向量机(SVM),K最近邻(KNN),随机林和多层Perceptron(MLP)。结果表明,与一个输入特征(RSSI_WSN)的随机森林方法提供了与其他四种型号相比为87%的最高精度。当使用两个输入功能(RSSI_WSN和RSSI_TAG2)时,所有型号显示出超过98%的准确性。因此,随机森林是一种可靠的模型,可用于预测水稻中的水分含量水平,因为即使仅使用一个输入特征,它也会提供高精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号