首页> 美国卫生研究院文献>Polymers >A Physics-Informed Assembly of Feed-Forward Neural Network Engines to Predict Inelasticity in Cross-Linked Polymers
【2h】

A Physics-Informed Assembly of Feed-Forward Neural Network Engines to Predict Inelasticity in Cross-Linked Polymers

机译:一种物理信息的前馈神经网络发动机的组装以预测交联聚合物中的绝缘性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In solid mechanics, data-driven approaches are widely considered as the new paradigm that can overcome the classic problems of constitutive models such as limiting hypothesis, complexity, and accuracy. However, the implementation of machine-learned approaches in material modeling has been modest due to the high-dimensionality of the data space, the significant size of missing data, and limited convergence. This work proposes a framework to hire concepts from polymer science, statistical physics, and continuum mechanics to provide super-constrained machine-learning techniques of reduced-order to partly overcome the existing difficulties. Using a sequential order-reduction, we have simplified the 3D stress–strain tensor mapping problem into a limited number of super-constrained 1D mapping problems. Next, we introduce an assembly of multiple replicated neural network learning agents (L-agents) to systematically classify those mapping problems into a few categories, each of which were described by a distinct agent type. By capturing all loading modes through a simplified set of dispersed experimental data, the proposed hybrid assembly of L-agents provides a new generation of machine-learned approaches that simply outperform most constitutive laws in training speed, and accuracy even in complicated loading scenarios. Interestingly, the physics-based nature of the proposed model avoids the low interpretability of conventional machine-learned models.
机译:在坚实的力学中,数据驱动方法被广泛认为是可以克服本构模型的经典问题的新范式,例如限制假设,复杂性和准确性。然而,由于数据空间的高度,缺失数据的显着大小和有限的收敛性,因此在材料建模中实施机器学习方法已经适度。这项工作提出了一个框架,以雇用聚合物科学,统计物理和连续内力学的概念,以提供超限制的机器学习技术,减少秩序,以部分克服现有的困难。使用顺序减少,我们已经简化了3D应力 - 应变张量映射问题到有限数量的超约束1D映射问题中。接下来,我们介绍多个复制的神经网络学习代理(L-Agents)的组装,以系统地将那些映射问题分类为几个类别,每个类别由不同的代理类型描述。通过通过简化的分散的实验数据捕获所有加载模式,L-Agent的提议的混合组装提供了新一代的机器学习方法,即即使在复杂的加载方案中,即使在复杂的加载方案中也是如此简单地优于最重要的法律。有趣的是,所提出的模型的基于物理的性质避免了传统机器学习模型的低可解释性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号