首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks
【24h】

Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks

机译:心血管流程建模中的机器学习:使用物理信息神经网络,从无创4D流程MRI数据预测动脉血压

获取原文
获取原文并翻译 | 示例

摘要

Advances in computational science offer a principled pipeline for predictive modeling of cardiovascular flows and aspire to provide a valuable tool for monitoring, diagnostics and surgical planning. Such models can be nowadays deployed on large patient-specific topologies of systemic arterial networks and return detailed predictions on flow patterns, wall shear stresses, and pulse wave propagation. However, their success heavily relies on tedious pre-processing and calibration procedures that typically induce a significant computational cost, thus hampering their clinical applicability. In this work we put forth a machine learning framework that enables the seamless synthesis of non-invasive in-vivo measurement techniques and computational flow dynamics models derived from first physical principles. We illustrate this new paradigm by showing how one-dimensional models of pulsatile flow can be used to constrain the output of deep neural networks such that their predictions satisfy the conservation of mass and momentum principles. Once trained on noisy and scattered clinical data of flow and wall displacement, these networks can return physically consistent predictions for velocity, pressure and wall displacement pulse wave propagation, all without the need to employ conventional simulators. A simple post-processing of these outputs can also provide a relatively cheap and effective way for estimating Windkessel model parameters that are required for the calibration of traditional computational models. The effectiveness of the proposed techniques is demonstrated through a series of prototype benchmarks, as well as a realistic clinical case involving in-vivo measurements near the aorta/carotid bifurcation of a healthy human subject. (C) 2019 Elsevier B.V. All rights reserved.
机译:计算科学的进步为心血管流量的预测建模提供了一条原则性的管道,并渴望为监测,诊断和手术计划提供有价值的工具。如今,此类模型可以部署在大型患者特定的全身动脉网络拓扑上,并返回有关流型,壁切应力和脉搏波传播的详细预测。然而,它们的成功很大程度上依赖于繁琐的预处理和校准程序,这些程序通常会导致可观的计算成本,从而阻碍了它们的临床适用性。在这项工作中,我们提出了一种机器学习框架,该框架使无创体内测量技术和源自第一物理原理的计算流动动力学模型能够无缝集成。我们通过展示如何使用脉动流的一维模型来约束深度神经网络的输出,从而使它们的预测满足质量和动量原理的守恒,来说明这一新范例。一旦对流量和壁位移的嘈杂和分散的临床数据进行了训练,这些网络就可以返回速度,压力和壁位移脉冲波传播的物理一致性预测,而无需使用常规模拟器。这些输出的简单后处理还可以为估算传统计算模型的校准所需的Windkessel模型参数提供相对便宜和有效的方法。通过一系列原型基准以及涉及健康人的主动脉/颈动脉分叉附近的体内测量的实际临床案例,证明了所提出技术的有效性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号