首页> 美国卫生研究院文献>Nanomaterials >Topology Challenge for the Assessment of Living Cell Deposits with Shear Bulk Acoustic Biosensor
【2h】

Topology Challenge for the Assessment of Living Cell Deposits with Shear Bulk Acoustic Biosensor

机译:用剪切散装声学生物传感器评估活细胞沉积物的拓扑挑战

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Shear bulk acoustic type of resonant biosensors, such as the quartz crystal microbalance (QCM), give access to label-free in-liquid analysis of surface interactions. The general understanding of the sensing principles was inherited from past developments in biofilms measurements and applied to cells while keeping the same basic assumptions. Thus, the biosensor readouts are still quite often described using ‘mass’ related terminology. This contribution aims to show that assessment of cell deposits with acoustic biosensors requires a deep understanding of the sensor transduction mechanism. More specifically, the cell deposits should be considered as a structured viscoelastic load and the sensor response depends on both material and topological parameters of the deposits. This shifts the paradigm of acoustic biosensor away from the classical mass loading perspective. As a proof of the concept, we recorded QCM frequency shifts caused by blood platelet deposits on a collagen surface under different rheological conditions and observed the final deposit shape with atomic force microscopy (AFM). The results vividly demonstrate that the frequency shift is highly impacted by the platelet topology on the bio-interface. We support our findings with numerical simulations of viscoelastic unstructured and structured loads in liquid. Both experimental and theoretical studies underline the complexity behind the frequency shift interpretation when acoustic biosensing is used with cell deposits.
机译:剪切散装声学类型的谐振生物传感器,如石英晶体微稳定(QCM),可进入无标签的表面相互作用分析。对传感原理的一般理解是从生物膜测量的过去的发育中遗传,并施加到细胞,同时保持相同的基本假设。因此,生物传感器读数仍然经常使用“质量”相关术语来描述。该贡献旨在表明,具有声学生物传感器的细胞沉积物的评估需要深入了解传感器转导机制。更具体地,电池沉积物应被认为是结构化的粘弹性负荷,传感器响应取决于沉积物的两种材料和拓扑参数。这将声学生物传感器的范例转移远离经典的大众装载透视。作为概念的证据,我们在不同流变条件下记录了血小板沉积物在胶原表面上引起的QCM频率偏移,并观察到原子力显微镜(AFM)的最终沉积形状。结果生动地证明频移由生物界面上的血小板拓扑产生高度影响。我们支持我们的研究结果,具有液体粘弹性非结构化和结构载荷的数值模拟。实验和理论研究均在与细胞沉积物一起使用声学生物沉积时强调频移解释背后的复杂性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号