首页> 美国卫生研究院文献>Materials >Comprehensive Machine Learning-Based Model for Predicting Compressive Strength of Ready-Mix Concrete
【2h】

Comprehensive Machine Learning-Based Model for Predicting Compressive Strength of Ready-Mix Concrete

机译:基于机器学习的综合性学习模型预测现成混合混凝土抗压强度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Considering that compressive strength (CS) is an important mechanical property parameter in many design codes, in order to ensure structural safety, concrete CS needs to be tested before application. However, conducting CS tests with multiple influencing variables is costly and time-consuming. To address this issue, a machine learning-based modeling framework is put forward in this work to evaluate the concrete CS under complex conditions. The influential factors of this process are systematically categorized into five aspects: man, machine, material, method and environment (4M1E). A genetic algorithm (GA) was applied to identify the most important influential factors for CS modeling, after which, random forest (RF) was adopted as the modeling algorithm to predict the CS from the selected influential factors. The effectiveness of the proposed model was tested on a case study, and the high Pearson correlation coefficient (0.9821) and the low mean absolute percentage error and delta (0.0394 and 0.395, respectively) indicate that the proposed model can deliver accurate and reliable results.
机译:考虑到压缩强度(CS)是许多设计代码中的重要机械性能参数,以确保结构安全,在应用前需要进行混凝土CS。然而,用多个影响变量进行CS测试是昂贵且耗时的。为了解决这个问题,在这项工作中提出了一种基于机器学习的建模框架,以评估在复杂条件下的混凝土CS。该过程的影响因素被系统地分为五个方面:人,机器,材料,方法和环境(4M1E)。应用遗传算法(GA)以确定CS建模最重要的影响因素,之后,采用随机林(RF)作为建模算法,以预测所选的影响因素的CS。在案例研究中测试了所提出的模型的有效性,以及高Pearson相关系数(0.9821)和低平均绝对百分比误差和δ(分别为0.0394和0.395)表明所提出的模型可以提供准确可靠的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

开通会员

免费获取本篇文献

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号